Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Hysteresis Nanoarchitectonics with Chiral Gel Fibers and Achiral Gold Nanospheres for Reversible Chiral Inversion.

Tytuł:
Hysteresis Nanoarchitectonics with Chiral Gel Fibers and Achiral Gold Nanospheres for Reversible Chiral Inversion.
Autorzy:
Xu H; Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobilogy and Dynamic Chemistry Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China.
Zhang Q; Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobilogy and Dynamic Chemistry Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China.
Gan JA; Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobilogy and Dynamic Chemistry Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China.
Wang Z; Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobilogy and Dynamic Chemistry Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China.
Chen M; Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobilogy and Dynamic Chemistry Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China.
Shan Y; Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobilogy and Dynamic Chemistry Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China.
Chen S; Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobilogy and Dynamic Chemistry Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China.
Tong F; Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobilogy and Dynamic Chemistry Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China.
Qu DH; Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobilogy and Dynamic Chemistry Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China.
Źródło:
Chemistry, an Asian journal [Chem Asian J] 2022 Mar 14; Vol. 17 (6), pp. e202101354. Date of Electronic Publication: 2022 Jan 27.
Typ publikacji:
Journal Article
Język:
English
Imprint Name(s):
Original Publication: Weinheim, Germany : Wiley-VCH, c2006-
MeSH Terms:
Gold*/chemistry
Nanospheres*
Gels ; Scattering, Small Angle ; X-Ray Diffraction
References:
.
G. Liu, J. Sheng, W. L. Teo, G. Yang, H. Wu, Y. Li, Y. Zhao, J. Am. Chem. Soc. 2018, 140, 16275-16283;.
M. Grzelczak, L. M. Liz-Marzan, R. Klajn, Chem. Soc. Rev. 2019, 48, 1342-1361;.
J. Ryssy, A. K. Natarajan, J. Wang, A. J. Lehtonen, M. K. Nguyen, R. Klajn, A. Kuzyk, Angew. Chem. Int. Ed. 2021, 60, 5859-5863;.
Angew. Chem. 2021, 133, 5923-5927;.
H. Wang, K. Wang, Y. Xu, W. Wang, S. Chen, M. Hart, L. Wojtas, L. P. Zhou, L. Gan, X. Yan, Y. Li, J. Lee, X. S. Ke, X. Q. Wang, C. W. Zhang, S. Zhou, T. Zhai, H. B. Yang, M. Wang, J. He, Q. F. Sun, B. Xu, Y. Jiao, P. J. Stang, J. L. Sessler, X. Li, J. Am. Chem. Soc. 2021, 143, 5826-5835;.
W. Lewandowski, N. Vaupotič, D. Pociecha, E. Górecka, L. M. Liz-Marzán, Adv. Mater. 2020, 32, 1905591;.
S. Mokashi-Punekar, Y. Zhou, S. C. Brooks, N. L. Rosi, Adv. Mater. 2020, 32, 1905975;.
Y. Li, T. Higaki, X. Du, R. Jin, Adv. Mater. 2020, 32, 1905488;.
H. Zhu, Q. Li, Z. Gao, H. Wang, B. Shi, Y. Wu, L. Shangguan, X. Hong, F. Wang, F. Huang, Angew. Chem. Int. Ed. 2020, 59, 10868-10872;.
Angew. Chem. 2020, 132, 10960-10964.
 .
X. Lan, Q. Wang, ACS Appl. Mater. Interfaces 2016, 8, 34598-34602;.
X. Jin, J. Jiang, M. Liu, ACS Nano 2016, 10, 11179-11186;.
N. Shukla, M. A. Bartel, A. J. Gellman, J. Am. Chem. Soc. 2010, 132, 8575-8580;.
J. Kumar, H. Eraña, E. López-Martínez, N. Claes, V. F. Martín, D. M. Solís, S. Bals, A. L. Cortajarena, J. Castilla, L. M. Liz-Marzán, Proc. Natl. Acad. Sci. USA 2018, 115, 3225-3230;.
D. Xia, P. Wang, X. Ji, N. M. Khashab, J. L. Sessler, F. Huang, Chem. Rev. 2020, 120, 6070-6123;.
N. H. Cho, G. H. Byun, Y. C. Lim, S. W. Im, H. Kim, H. E. Lee, H. Y. Ahn, K. T. Nam, ACS Nano 2020, 14, 3595-3602.
 .
P. Szustakiewicz, N. Kowalska, D. Grzelak, T. Narushima, M. Gora, M. Baginski, D. Pociecha, H. Okamoto, L. M. Liz-Marzan, W. Lewandowski, ACS Nano 2020, 14, 12918-12928;.
S. H. Jung, J. Jeon, H. Kim, J. Jaworski, J. H. Jung, J. Am. Chem. Soc. 2014, 136, 6446-6452.
 .
J. Cheng, G. Le Saux, J. Gao, T. Buffeteau, Y. Battie, P. Barois, V. Ponsinet, M. H. Delville, O. Ersen, E. Pouget, R. Oda, ACS Nano 2017, 11, 3806-3818;.
H. Shinmori, C. Mochizuki, Chem. Commun. 2017, 53, 6569-6572.
 .
C. Gautier, T. Burgi, J. Am. Chem. Soc. 2006, 128, 11079-11087;.
C. Gautier, T. Bürgi, ChemPhysChem 2009, 10, 483-492.
 .
A. O. Govorov, Z. Fan, P. Hernandez, J. M. Slocik, R. R. Naik, Nano Lett. 2010, 10, 1374-1382;.
G. Shemer, O. Krichevski, G. Markovich, T. Molotsky, I. Lubitz, A. B. Kotlyar, J. Am. Chem. Soc. 2006, 128, 11006-11007.
 .
A. Chakraborty, Nonappa, B. Mondal, K. Chaudhari, H. Rekola, V. Hynninen, M. A. Kostiainen, R. H. A. Ras, T. Pradeep, J. Phys. Chem. C 2021, 125, 3256-3267;.
Z. Cao, H. Gao, M. Qiu, W. Jin, S. Deng, K.-Y. Wong, D. Lei, Adv. Mater. 2020, 32, 1907151;.
N. Linh, M. Dass, M. F. Ober, L. V. Besteiro, Z. M. Wang, B. Nickel, A. O. Govorov, T. Liedl, A. Heuer-Jungemann, ACS Nano 2020, 14, 7454-7461;.
T. Molotsky, T. Tamarin, A. B. Moshe, G. Markovich, A. B. Kotlyar, J. Phys. Chem. C 2010, 114, 15951-15954;.
J. P. Coelho, G. Tardajos, V. Stepanenko, A. Rödle, G. Fernández, A. Guerrero-Martínez, ACS Nano 2015, 9, 11241-11248;.
M. Golla, S. K. Albert, S. Atchimnaidu, D. Perumal, N. Krishnan, R. Varghese, Angew. Chem. Int. Ed. 2019, 58, 3865-3869;.
Angew. Chem. 2019, 131, 3905-3909.
Z. Wang, F. Cheng, T. Winsor, Y. Liu, Nanotechnology 2016, 27, 412001.
A. O. Govorov, Y. K. Gun′ko, J. M. Slocik, V. A. Gérard, Z. Fan, R. R. Naik, J. Mater. Chem. 2011, 21, 16806-16818.
 .
X. Lan, Q. Wang, Adv. Mater. 2016, 28, 10499-10507;.
L. Zhu, X. Li, S. Wu, K. T. Nguyen, H. Yan, H. Agren, Y. Zhao, J. Am. Chem. Soc. 2013, 135, 9174-9180.
 .
W. Miao, L. Zhang, X. Wang, L. Qin, M. Liu, Langmuir 2013, 29, 5435-5442;.
H. Jiang, Y. Jiang, J. Han, L. Zhang, M. Liu, Angew. Chem. Int. Ed. 2019, 58, 785-790;.
Angew. Chem. 2019, 131, 795-800;.
T. Kato, M. Gupta, D. Yamaguchi, K. P. Gan, M. Nakayama, Bull. Chem. Soc. Jpn. 2021, 94, 357-376;.
Z. Q. Cao, Y. C. Wang, A. H. Zou, G. London, Q. Zhang, C. Gao, D. H. Qu, Chem. Commun. 2017, 53, 8683-8686;.
W. Z. Wang, C. Gao, Q. Zhang, X. H. Ye, D. H. Qu, Chem. Asian J. 2017, 12, 410-414;.
J. J. Yu, Z. Q. Cao, Q. Zhang, S. Yang, D. H. Qu, H. Tian, Chem. Commun. 2016, 52, 12056-12059;.
J. J. Yu, W. J. Liang, Q. Zhang, M. M. Li, D. H. Qu, Chem. Asian J. 2019, 14, 3141-3144;.
Q. Zhang, W. Z. Wang, J. J. Yu, D. H. Qu, H. Tian, Adv. Mater. 2017, 29, 1604948.
H. Liang, B. Hua, F. Xu, L. S. Gan, L. Shao, F. Huang, J. Am. Chem. Soc. 2020, 142, 19772-19778.
A. Guerrero-Martínez, T. Montoro, M. H. Viñas, G. Tardajos, J. Pharm. Sci. 2008, 97, 1484-1498.
Y. Zhu, L. Xu, W. Ma, Z. Xu, H. Kuang, L. Wang, C. Xu, Chem. Commun. 2012, 48, 11889-11891.
 .
D. Niu, Y. Jiang, L. Ji, G. Ouyang, M. Liu, Angew. Chem. Int. Ed. 2019, 58, 5946-5950;.
Angew. Chem. 2019, 131, 6007-6011;.
K. Ariga, T. Mori, T. Kitao, T. Uemura, Adv. Mater. 2020, 32, e1905657.
 .
Q. Zhang, C. Y. Shi, D. H. Qu, Y. T. Long, B. L. Feringa, H. Tian, Sci. Adv. 2018, 4, eaat8192;.
Q. Zhang, D. H. Qu, B. L. Feringa, H. Tian, J. Am. Chem. Soc. 2022, DOI: 10.1021/jacs.1c10359;.
Q. Zhang, Y. X. Deng, H. X. Luo, C. Y. Shi, G. M. Geise, B. L. Feringa, H. Tian, D. H. Qu, J. Am. Chem. Soc. 2019, 141, 12804-12814.
K. Ariga, Nanoscale Horiz. 2021, 6, 364-378.
T. L. Greaves, C. J. Drummond, Chem. Soc. Rev. 2013, 42, 1096-1120.
P. Duan, Y. Li, L. Li, J. Deng, M. Liu, J. Phys. Chem. B 2011, 115, 3322-3329.
C. Graf, D. L. J. Vossen, A. Imhof, A. van Blaaderen, Langmuir 2003, 19, 6693-6700.
Z. Jin, Y. Sugiyama, C. Zhang, G. Palui, Y. Xin, L. Du, S. Wang, N. Dridi, H. Mattoussi, Chem. Mater. 2020, 32, 7469-7483.
H. Liu, Z. Li, Y. Yan, J. Zhao, Y. Wang, Nanoscale 2019, 11, 21990-21998.
J. Wu, Y. Xu, D. Li, X. Ma, H. Tian, Chem. Commun. 2017, 53, 4577-4580.
Y. Xu, X. Wang, X. Ma, Dyes Pigm. 2017, 145, 385-390.
A. Guerrero-Martínez, B. Auguié, J. L. Alonso-Gómez, Z. Džolič, S. Gómez-Grańa, M. Žinić, M. M. Cid, L. M. Liz-Marzán, Angew. Chem. Int. Ed. 2011, 50, 5499-5503;.
Angew. Chem. 2011, 123, 5613-5617.
K. Kwon, K. Y. Lee, Y. W. Lee, M. Kim, J. Heo, S. J. Ahn, S. W. Han, J. Phys. Chem. C 2007, 111, 1161-1165.
A. Gole, C. J. Murphy, Langmuir 2005, 21, 10756-10762.
Y. Zhang, M. Qin, C. Xing, C. Zhao, X. Dou, C. Feng, ACS Nano 2020, 14, 17151-17162.
H. N. Tsao, D. Cho, J. W. Andreasen, A. Rouhanipour, D. W. Breiby, W. Pisula, K. Müllen, Adv. Mater. 2009, 21, 209-212.
 .
B. Zehnpfennig, P. Wiriyasermkul, D. A. Carlson, M. Quick, J. Biol. Chem. 2015, 290, 16372-16382;.
X. L. Zheng, R. R. Tao, R. R. Gu, W. Z. Wang, D. H. Qu, Beilstein J. Org. Chem. 2018, 14, 2074-2081;.
X. Zhang, X. Du, X. Huang, Z. Lv, J. Am. Chem. Soc. 2013, 135, 9248-9251.
Grant Information:
SN-ZJU-SIAS-006 Starry Night Science Fund of Zhejiang University Shanghai Institute for Advanced Study; 22025503 National Natural Science Foundation of China; 21790361 National Natural Science Foundation of China; 21871084 National Natural Science Foundation of China; 21672060 National Natural Science Foundation of China; 22105071 National Natural Science Foundation of China; 2018SHZDZX03 Shanghai Municipal Science and Technology Major Project; Fundamental Research Funds for the Central Universities; B16017 Program of Introducing Talents of Discipline to Universities; 19XD1421100 Program of Shanghai Academic/Technology Research Leader; 17520750100 Shanghai Science and Technology Committee; NSFC/China; 21YF1409200 Shanghai Sailing Program; Research Center of Analysis and Test of East China University of Science and Technology
Contributed Indexing:
Keywords: chiral inversion; gold nanorods; gold nanospheres; reversible modulation; supramolecular gels
Substance Nomenclature:
0 (Gels)
7440-57-5 (Gold)
Entry Date(s):
Date Created: 20220110 Date Completed: 20220316 Latest Revision: 20220316
Update Code:
20240104
DOI:
10.1002/asia.202101354
PMID:
35007397
Czasopismo naukowe
Intelligent control over the handedness of circular dichroism (CD) is of special significance in self-organized biological and artificial systems. Herein, we report a chiral organic molecule (R1) containing a disulfide unit self-assembles into M-type helical fibers gels, which undergoes chirality inversion by incorporating gold nanospheres due to the formation of Au-S bonds between R1 and gold nanospheres. Upon heating at 80 °C, the aggregation of gold nanospheres results in a disappearance of the Au-S bond, allowing the reversible switching back to M-type helical fibers. The original chirality of M-type fibers could also be retained by adding anisotropic gold nanorods. A series of characterization methods, involving CD, Raman, Infrared spectroscopy, electric microscopy, and small-angle X-ray scattering (SAXS) measurements were used to investigate the mechanism of chiral evolutions. Our results provide a facile way of fabricating hysteresis nanoarchitectonics to achieve dynamic supramolecular chirality using inorganic metallic nanoparticles.
(© 2022 Wiley-VCH GmbH.)
Zaloguj się, aby uzyskać dostęp do pełnego tekstu.

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies