Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Hydrogen/Deuterium Exchange Behavior During Denaturing/Refolding Processes Determined in Tetragonal Hen Egg-White Lysozyme Crystals.

Tytuł:
Hydrogen/Deuterium Exchange Behavior During Denaturing/Refolding Processes Determined in Tetragonal Hen Egg-White Lysozyme Crystals.
Autorzy:
Kita A; Institute for Integrated Radiation and Nuclear Science, Kyoto University, Kumatori, Sen-nan, Osaka, 590-0494, Japan.
Morimoto Y; Institute for Integrated Radiation and Nuclear Science, Kyoto University, Kumatori, Sen-nan, Osaka, 590-0494, Japan. .
Źródło:
Molecular biotechnology [Mol Biotechnol] 2022 May; Vol. 64 (5), pp. 590-597. Date of Electronic Publication: 2022 Jan 13.
Typ publikacji:
Journal Article
Język:
English
Imprint Name(s):
Publication: [Cham] : Springer
Original Publication: Totowa, NJ : Humana Press, c1994-
MeSH Terms:
Hydrogen*/chemistry
Muramidase*
Animals ; Chickens/metabolism ; Deuterium/chemistry ; Protein Denaturation ; Proteins ; Solvents
References:
Kossiakoff, A. A. (1982). Protein dynamics investigated by the neutron diffraction–hydrogen exchange technique. Nature, 296, 713–721. https://doi.org/10.1038/296713a0. (PMID: 10.1038/296713a07070514)
Bentley, G. A., Delepierre, M., Dobson, C. M., Wedin, R. E., Mason, S. A., & Poulsen, F. M. (1983). Exchange of individual hydrogens for a protein in a crystal and in solution. Journal of Molecular Biology, 170, 243–247. https://doi.org/10.1016/s0022-2836(83)80235-6. (PMID: 10.1016/s0022-2836(83)80235-66631963)
Mason, S. A., Bentley, G. A., & McIntyre, G. J. (1984). Deuterium exchange in lysozyme at 1.4-A resolution. Basic Life Sciences, 27, 323–334. https://doi.org/10.1007/978-1-4899-0375-4_19. (PMID: 10.1007/978-1-4899-0375-4_196712569)
Delepierre, M., Dobson, C. M., Karplus, M., Poulsen, F. M., States, D. J., & Wedin, R. E. (1987). Electrostatic effects and hydrogen exchange behaviour in proteins. The pH dependence of exchange rates in lysozyme. Journal of Molecular Biology, 197, 111–122. https://doi.org/10.1016/0022-2836(87)90613-9. (PMID: 10.1016/0022-2836(87)90613-92824793)
Pedersen, T. G., Sigurskjold, B. W., Andersen, K. V., Kjaer, M., Poulsen, F. M., Dobson, C. M., & Redfield, C. (1991). A nuclear magnetic resonance study of the hydrogen-exchange behaviour of lysozyme in crystals and solution. Journal of Molecular Biology, 218, 413–426. https://doi.org/10.1016/0022-2836(91)90722-i. (PMID: 10.1016/0022-2836(91)90722-i2010918)
Radford, S. E., Buck, M., Topping, K. D., Dobson, C. M., & Evans, P. A. (1992). Hydrogen exchange in native and denatured states of hen egg-white lysozyme. Proteins, 14, 237–248. https://doi.org/10.1002/prot.340140210. (PMID: 10.1002/prot.3401402101409571)
Lehmann, M. S., Mason, S. A., & McIntyre, G. J. (1985). Study of ethanol-lysozyme interactions using neutron diffraction. Biochemistry, 24, 5862–5869. https://doi.org/10.1021/bi00342a026. (PMID: 10.1021/bi00342a0264084497)
Lehmann, M. S., & Stansfield, R. F. (1989). Binding of dimethyl sulfoxide to lysozyme in crystals, studied with neutron diffraction. Biochemistry, 28, 7028–7033. https://doi.org/10.1021/bi00443a037. (PMID: 10.1021/bi00443a0372819045)
Bouquiere, J. P., Finney, J. L., & Lehmann, M. S. (1993). Interaction of the tetramethylammonium ion with the lysozyme molecule, studied using neutron diffraction. Journal of the Chemical Society, Faraday Transactions, 89, 2701–2705. https://doi.org/10.1039/FT9938902701. (PMID: 10.1039/FT9938902701)
Kita, A., & Morimoto, Y. (2016). An effective deuterium exchange method for neutron crystal structure analysis with unfolding–refolding processes. Molecular Biotechnology, 58, 130–136. https://doi.org/10.1007/s12033-015-9908-8. (PMID: 10.1007/s12033-015-9908-826718545)
Blake, C. C. F., Koenig, D. F., Mair, G. A., North, A. C. T., Phillips, D. C., & Sarma, V. R. (1965). Structure of hen egg-white lysozyme: A three-dimensional Fourier synthesis at 2 Å resolution. Nature, 206, 757–761. https://doi.org/10.1038/206757a0. (PMID: 10.1038/206757a05891407)
Baum, J., Dobson, C. M., Evans, P. A., & Hanley, C. (1989). Characterization of a partly folded protein by NMR methods: Studies on the molten globule state of guinea pig alpha-lactoalbumin. Biochemistry, 28, 7–13. https://doi.org/10.1021/bi00427a002. (PMID: 10.1021/bi00427a0022706269)
Walters, B. T., Mayne, L., Hinshaw, J. R., Sosnick, T. R., & Englander, S. W. (2013). Folding of a large protein at high structural resolution. Proceedings of the National Academy of Sciences of the United States of America, 110, 18898–18903. https://doi.org/10.1073/pnas.1319482110. (PMID: 10.1073/pnas.1319482110241910533839771)
Georgescauld, F., Popova, K., Gupta, A. J., Bracher, A., Engen, J. R., Hayer-Hartle, M., & Hartl, F. U. (2014). GroEL/ES chaperonin modulates the mechanism and accelerates the rate of TIM-barrel domain folding. Cell, 157, 922–934. https://doi.org/10.1016/j.cell.2014.03.038. (PMID: 10.1016/j.cell.2014.03.038248136144071350)
Akgun, B., Satija, S., Nanda, H., Pirrone, G. F., Shi, X., Engen, J. R., & Kent, M. S. (2013). Conformational transition of membrane-associated terminally acylated HIV-1 Nef. Structure, 21, 1822–1833. https://doi.org/10.1016/j.str.2013.08.008. (PMID: 10.1016/j.str.2013.08.008240357104011395)
Kita, A., & Morimoto, Y. (2020). Hydrogen/deuterium exchange behavior in tetragonal hen egg-white lysozyme crystals affected by solution state. Journal of Applied Crystallography, 53, 837–840. https://doi.org/10.1107/S1600576720005488. (PMID: 10.1107/S1600576720005488326848987312140)
Bennett, B., Langan, P., Coates, L., Mustyakimov, M., Schoenborn, B., Howell, E. E., & Dealwis, C. (2006). Neutron diffraction studies of Escherichia coli dihydrofolate reductase complexed with methotrexate. Proceedings of the National Academy of Sciences of the United States of America, 103, 18493–18498. https://doi.org/10.1073/pnas.0604977103. (PMID: 10.1073/pnas.0604977103171304561664550)
Sukumar, N., Mathews, F. S., Langan, P., & Davidson, V. L. (2010). A joint x-ray and neutron study on amicyanin reveals the role of protein dynamics in electron transfer. Proceedings of the National Academy of Sciences of the United States of America, 107, 6817–6822. https://doi.org/10.1073/pnas.0912672107. (PMID: 10.1073/pnas.0912672107203512522872398)
Wan, Q., Bennett, B. C., Wilson, M. A., Kovalevsky, A., Langan, P., Howell, E. E., & Dealwis, C. (2014). Toward resolving the catalytic mechanism of dihydrofolate reductase using neutron and ultrahigh-resolution X-ray crystallography. Proceedings of the National Academy of Sciences of the United States of America, 111, 18225–18230. https://doi.org/10.1073/pnas.1415856111. (PMID: 10.1073/pnas.1415856111254530834280638)
Meilleur, F., Munshi, P., Robertson, L., Stoica, A. D., Crow, L., Kovalevsky, A., Koritsanszky, T., Chakoumakos, B. C., Blessing, R., & Myles, D. A. A. (2013). The IMAGINE instrument: First neutron protein structure and new capabilities for neutron macromolecular crystallography. Acta Crystallographica, D69, 2157–2160. https://doi.org/10.1107/S0907444913019604. (PMID: 10.1107/S0907444913019604)
Schröder, G. C., O’Dell, W. B., Myles, D. A. A., Kovalevsky, A., & Meilleur, F. (2018). IMAGINE: Neutrons reveal enzyme chemistry. Acta Crystallographica, D74, 778–786. https://doi.org/10.1107/S2059798318001626. (PMID: 10.1107/S2059798318001626)
Liebschner, D., Afonine, P. V., Baker, M. L., Bunkoczi, G., Chen, V. B., Croll, T. I., Hintze, B., Hung, L.-W., Jain, S., McCoy, A. J., Moriarty, N. W., Oeffner, R. D., Poon, B. K., Prisant, M. G., Read, R. J., Richardson, J. S., Richardson, D. C., Sammito, M. D., Sobolev, O. V., … Adams, P. D. (2019). Macromolecular structure determination using X-rays, neutrons and electrons: Recent developments in Phenix. Acta Crystallographica, D75, 861–877. https://doi.org/10.1107/S2059798319011471. (PMID: 10.1107/S2059798319011471)
Williams, C. J., Headd, J. J., Moriarty, N. W., Prisant, M. G., Videau, L. L., Deis, L. N., Verma, V., Keedy, D. A., Hintze, B. J., Chen, V. B., Jain, S., Lewis, S. M., Arendall, W. B., 3rd., Snoeyink, J., Adams, P. D., Lovell, S. C., Richardson, J. S., & Richardson, D. C. (2018). MolProbity: More and better reference data for improved all-atom structure validation. Protein Sciences, 27, 293–315. https://doi.org/10.1002/pro.3330. (PMID: 10.1002/pro.3330)
Fink, A. L., Calciano, L. J., Goto, Y., Kurotsu, T., & Palleros, D. R. (1994). Classification of acid denaturation of proteins: Intermediates and unfolded states. Biochemistry, 33, 12504–12511. https://doi.org/10.1021/bi00207a018. (PMID: 10.1021/bi00207a0187918473)
Hameed, M., Ahmad, B., Fazili, K. M., Andrabi, K., & Khan, R. H. (2007). Different molten globule-like folding intermediates of hen egg white lysozyme induced by high pH and tertiary butanol. Journal of Biochemistry, 141, 573–583. https://doi.org/10.1093/jb/mvm057. (PMID: 10.1093/jb/mvm05717307793)
Meersman, F., Atilgan, C., Miles, A. J., Bader, R., Shang, W., Matagne, A., Wallace, B. A., & Koch, M. H. J. (2010). Consistent picture of reversible thermal unfolding of hen egg-white lysozyme from experiment and molecular dynamics. Biophysical Journal, 99, 2255–2263. https://doi.org/10.1016/j.bpj.2010.07.060. (PMID: 10.1016/j.bpj.2010.07.060209236603042584)
Wohlkonig, A., Huet, J., Looze, Y., & Wintjens, R. (2010). Structural relationships in the lysozyme superfamily: Significant evidence for glycoside hydrolase signature motifs. PLoS ONE, 5, e15388. https://doi.org/10.1371/journal.pone.0015388. (PMID: 10.1371/journal.pone.0015388210857022976769)
McAllister, R. G., & Konermann, L. (2015). Challenges in the interpretation of protein H/D exchange data: A molecular dynamics simulation perspective. Biochemistry, 54, 2683–2692. https://doi.org/10.1021/acs.biochem.5b00215. (PMID: 10.1021/acs.biochem.5b0021525860179)
James, E. I., Murphree, T. A., Vorauer, C., Engen, J. R., & Guttman, M. (2021). Advances in hydrogen/deuterium exchange mass spectrometry and the pursuit of challenging biological systems. Chemical Reviews. https://doi.org/10.1021/acs.chemrev.1c00279.
Krishna, M. M. G., Hoang, L., Lin, Y., & Englander, S. W. (2004). Hydrogen exchange methods to study protein folding. Methods, 34, 51–64. https://doi.org/10.1016/j.ymeth.2004.03.005. (PMID: 10.1016/j.ymeth.2004.03.00515283915)
Oostenbrink, C., Soares, T. A., van der Vegt, N. F. A., & van Gunsteren, W. F. (2005). Validation of the 53A6 GROMOS force field. European Biophysics Journal, 34, 273–284. https://doi.org/10.1007/s00249-004-0448-6. (PMID: 10.1007/s00249-004-0448-6)
Grant Information:
Ishizue Kyoto University; 2020 Kyoto University
Contributed Indexing:
Keywords: Crystal structure; Denatured/refolded protein; H/D exchange; Hen egg-white lysozyme; X/N joint refinement
Substance Nomenclature:
0 (Proteins)
0 (Solvents)
7YNJ3PO35Z (Hydrogen)
AR09D82C7G (Deuterium)
EC 3.2.1.17 (Muramidase)
Entry Date(s):
Date Created: 20220114 Date Completed: 20220426 Latest Revision: 20220426
Update Code:
20240104
DOI:
10.1007/s12033-022-00447-7
PMID:
35028904
Czasopismo naukowe
The hydrogen/deuterium (H/D) exchange of main-chain amide hydrogens in the protein that denatured and refolded in deuterated solvent is considered to contain the traces of hydrogen bond cleavages or the exposure to solvent of the buried part of the protein during the denaturing and refolding (denaturing/refolding) processes. Here, we report the H/D exchange behaviors in hen egg-white lysozymes denatured under acidic conditions, basic conditions, and thermal conditions and then refolded in deuterated solvents, using crystallographic methods. The results indicate that the space containing the Trp28 side chain was hardly exposed to the solvent in acidic conditions, but exposed under basic or heated conditions. Moreover, the β-bridges between Tyr53 and Ile58 in strands β2 and β3, which are in a highly conserved region, show some tolerance to changes in pD. The results indicate that crystallographic method is one of the powerful tools to analyze the denaturing/refolding processes of proteins.
(© 2022. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.)

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies