Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Single point imaging with radial acquisition and compressed sensing.

Tytuł:
Single point imaging with radial acquisition and compressed sensing.
Autorzy:
Ilbey S; Department of Radiology, Medical Physics, Medical Center University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
Jungmann PM; Department of Diagnostic and Interventional Radiology, Medical Center University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.; Department of Radiology, Cantonal Hospital Grisons, Chur, Switzerland.
Fischer J; Department of Radiology, Medical Physics, Medical Center University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
Jung M; Department of Diagnostic and Interventional Radiology, Medical Center University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
Bock M; Department of Radiology, Medical Physics, Medical Center University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
Özen AC; Department of Radiology, Medical Physics, Medical Center University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
Źródło:
Magnetic resonance in medicine [Magn Reson Med] 2022 Jun; Vol. 87 (6), pp. 2685-2696. Date of Electronic Publication: 2022 Jan 17.
Typ publikacji:
Journal Article
Język:
English
Imprint Name(s):
Publication: 1999- : New York, NY : Wiley
Original Publication: San Diego : Academic Press,
MeSH Terms:
Artifacts*
Magnetic Resonance Imaging*/methods
Humans ; Image Processing, Computer-Assisted/methods ; Knee Joint/diagnostic imaging ; Phantoms, Imaging
References:
Du J, Bydder GM. Qualitative and quantitative ultrashort-TE MRI of cortical bone. NMR Biomed. 2013;26:489-506.
Gatehouse PD, Bydder GM. Magnetic resonance imaging of short T2 components in tissue. Clin Radiol. 2003;58:1-19.
Robson MD, Benjamin M, Gishen P, Bydder GM. Magnetic resonance imaging of the Achilles tendon using ultrashort TE (UTE) pulse sequences. Clin Radiol. 2004;59:727-735.
Weiger M, Pruessmann KP, Bracher A-K, et al. High-resolution ZTE imaging of human teeth. NMR Biomed. 2012;25:1144-1151.
Robson MD, Bydder GM. Clinical ultrashort echo time imaging of bone and other connective tissues. NMR Biomed. 2006;19:765-780.
Shapiro L, Harish M, Hargreaves B, Staroswiecki E, Gold G. Advances in musculoskeletal MRI: technical considerations. J Magn Reson Imaging. 2012;36:775-787.
Robson MD, Gatehouse PD, Bydder M, Bydder GM. Magnetic resonance: an introduction to ultrashort TE (UTE) imaging. J Comput Assist Tomogr. 2003;27:825-846.
Hafner S. Fast imaging in liquids and solids with the back-projection low angle ShoT (BLAST) technique. Magn Reson Imaging. 1994;12:1047-1051.
Lauterbur PC. Image formation by induced local interactions: examples employing nuclear magnetic resonance. Nature. 1973;242:190-191.
Madio DP, Lowe IJ. Ultra-fast imaging using low flip angles and FIDs. Magn Reson Med. 1995;34:525-529.
Weiger M, Pruessmann KP. MRI with zero echo time. Encycl Magn Reson. 2012;1:311-322.
Grodzki DM, Jakob PM, Heismann B. Ultrashort echo time imaging using Pointwise Encoding Time Reduction with Radial Acquisition (PETRA). Magn Reson Med. 2012;67:510-518.
Li C, Magland JF, Zhao X, Seifert AC, Wehrli FW. Selective in vivo bone imaging with long-T2 suppressed PETRA MRI. Magn Reson Med. 2017;77:989-997.
Wu Y, Ackerman JL, Chesler DA, Graham L, Wang Y, Glimcher MJ. Density of organic matrix of native mineralized bone measured by water- and fat-suppressed proton projection MRI. Magn Reson Med. 2003;50:59-68.
Froidevaux R, Weiger M, Rösler MB, Brunner DO, Pruessmann KP. HYFI: hybrid filling of the dead-time gap for faster zero echo time imaging. NMR Biomed. 2021;34:e4493. doi:10.1002/nbm.4493.
Idiyatullin D, Corum C, Park JY, Garwood M. Fast and quiet MRI using a swept radiofrequency. J Magn Reson. 2006;181:342-349.
Özen AC, Atalar E, Korvink JG, Bock M. In vivo MRI with concurrent excitation and acquisition using automated active analog cancellation. Sci Rep. 2018;8. 10.1038/s41598-018-28894-w.
Froidevaux R, Weiger M, Brunner DO, Dietrich BE, Wilm BJ, Pruessmann KP. Filling the dead-time gap in zero echo time MRI: principles compared. Magn Reson Med. 2018;79:2036-2045.
Wu Y, Dai G, Ackerman JL, et al. Water- and fat-suppressed proton projection MRI (WASPI) of rat femur bone. Magn Reson Med. 2007;57:554-567.
Lee YH, Suh JS, Grodzki D. Ultrashort echo (UTE) versus Pointwise Encoding Time Reduction with Radial Acquisition (PETRA) sequences at 3 Tesla for knee meniscus: a comparative study. Magn Reson Imaging. 2016;34:75-80.
Van Dyck P, Vanhevel F, Vanhoenacker FM, et al. Morphological MR imaging of the articular cartilage of the knee at 3 T-comparison of standard and novel 3D sequences. Insights Imaging. 2015;6:285-293.
Kobayashi N, Goerke U, Wang L, Ellermann J, Metzger GJ, Garwood M. Gradient-modulated PETRA MRI. Tomography. 2015;1:85-90.
Candès EJ, Romberg J, Tao T. Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information. IEEE Trans Inf Theory. 2006;52:489-509.
Donoho DL. Compressed sensing. IEEE Trans Inf Theory. 2006;52:1289-1306.
Lustig M, Donoho D, Pauly JM. Sparse MRI: the application of compressed sensing for rapid MR imaging. Magn Reson Med. 2007;58:1182-1195.
Yang J, Zhang Y, Yin W. A fast alternating direction method for TVL1-L2 signal reconstruction from partial Fourier data. IEEE J Sel Top Signal Process. 2010;4:288-297.
Huang J, Zhang S, Metaxas D. Efficient MR image reconstruction for compressed MR imaging. Med Image Anal. 2011;15:670-679.
Block KT, Uecker M, Frahm J. Undersampled radial MRI with multiple coils. iterative image reconstruction using a total variation constraint. Magn Reson Med. 2007;57:1086-1098.
Fritz J, Ahlawat S, Demehri S, et al. Compressed sensing SEMAC: 8-fold accelerated high resolution metal artifact reduction MRI of cobalt-chromium knee arthroplasty implants. Invest Radiol. 2016;51:666-676.
Jungmann PM, Bensler S, Zingg P, Fritz B, Pfirrmann CW, Sutter R. Improved visualization of juxtaprosthetic tissue using metal artifact reduction magnetic resonance imaging: experimental and clinical optimization of compressed sensing SEMAC. Invest Radiol. 2019;54:23-31.
Zibetti MVW, Sharafi A, Otazo R, Regatte RR. Accelerated mono- and biexponential 3D-T1ρ relaxation mapping of knee cartilage using golden angle radial acquisitions and compressed sensing. Magn Reson Med. 2020;83:1291-1309.
Madelin G, Chang G, Otazo R, Jerschow A, Regatte RR. Compressed sensing sodium MRI of cartilage at 7T: preliminary study. J Magn Reson. 2012;214:360-365.
Otazo R, Kim D, Axel L, Sodickson DK. Combination of compressed sensing and parallel imaging for highly accelerated first-pass cardiac perfusion MRI. Magn Reson Med. 2010;64:767-776.
Emid S, Creyghton JHN. High resolution NMR imaging in solids. Physica B+C. 1985;128:81-83.
Emid S. Ultra high resolution multiple quantum spectroscopy in solids. Physica B+C. 1985;128:79-80.
Rioux JA, Beyea SD, Bowen CV. 3D single point imaging with compressed sensing provides high temporal resolution R 2* mapping for in vivo preclinical applications. Magn Reson Mater Phys. 2017;30:41-55.
Speidel T, Paul J, Wundrak S, Rasche V. Quasi-random single-point imaging using low-discrepancy $k$ -space sampling. IEEE Trans Med Imaging. 2018;37:473-479.
Cook RL. Stochastic sampling in computer graphics. ACM Trans Graph TOG. 1986;5:51-72.
Yuksel C. Sample elimination for generating Poisson disk sample sets. Comput Graph Forum. 2015;34:25-32.
Jackson JI, Meyer CH, Nishimura DG, Macovski A. Selection of a convolution function for Fourier inversion using gridding (computerised tomography application). IEEE Trans Med Imaging. 1991;10:473-478.
Beatty PJ, Nishimura DG, Pauly JM. Rapid gridding reconstruction with a minimal oversampling ratio. IEEE Trans Med Imaging. 2005;24:799-808.
Boyd S, Parikh N, Chu E, Peleato B, Eckstein J. Distributed optimization and statistical learning via the alternating direction method of multipliers. Found Trends Mach Learn. 2010;3:1-122.
BART. https://mrirecon.github.io/bart/ Published 2015 doi:10.5281/zenodo.31907.
Wang Z, Bovik AC, Sheikh HR, Simoncelli EP. Image quality assessment: from error visibility to structural similarity. IEEE Trans Image Process. 2004;13:600-612.
Jamieson S. Likert scales: how to (ab)use them. Med Educ. 2004;38:1217-1218.
Landis JR, Koch GG. The measurement of observer agreement for categorical data. Biometrics. 1977;33:159-174.
Gurney PT, Hargreaves BA, Nishimura DG. Design and analysis of a practical 3D cones trajectory. Magn Reson Med. 2006;55:575-582.
Noll DC. Multishot rosette trajectories for spectrally selective MR imaging. IEEE Trans Med Imaging. 1997;16:372-377.
Li Y, Yang R, Zhang C, Zhang J, Jia S, Zhou Z. Analysis of generalized rosette trajectory for compressed sensing MRI. Med Phys. 2015;42:5530-5544.
Niwa T, Nozawa K, Aida N. Visualization of the airway in infants with MRI using Pointwise Encoding Time Reduction with Radial Acquisition (PETRA). J Magn Reson Imaging. 2017;45:839-844.
Lee YH, Suh J-S, Grodzki D. Short T2 tissue imaging with the Pointwise Encoding Time Reduction with Radial Acquisition (PETRA) sequence: the additional value of fat saturation and subtraction in the meniscus. Magn Reson Imaging. 2015;33:385-389.
Chang EY, Du J, Chung CB. UTE imaging in the musculoskeletal system. J Magn Reson Imaging. 2015;41:870-883.
Grodzki DM, Jakob PM, Heismann B. Correcting slice selectivity in hard pulse sequences. J Magn Reson. 2012;214:61-67.
Contributed Indexing:
Keywords: Pointwise Encoding Time Reduction with Radial Acquisition; compressed sensing; magnetic resonance imaging; musculoskeletal imaging; short T2; single point imaging; ultra-short echo time
Entry Date(s):
Date Created: 20220117 Date Completed: 20220427 Latest Revision: 20220427
Update Code:
20240105
DOI:
10.1002/mrm.29156
PMID:
35037292
Czasopismo naukowe
Purpose: To accelerate the Pointwise Encoding Time Reduction with Radial Acquisition (PETRA) sequence using compressed sensing while preserving the image quality for high-resolution MRI of tissue with ultra-short T 2 ∗ values.
Methods: Compressed sensing was introduced in the PETRA sequence (csPETRA) to accelerate the time-consuming single point acquisition of the k-space center data. Random undersampling was applied to achieve acceleration factors up to Acc = 32. Phantom and in vivo images of the knee joint of six volunteers were measured at 3T using csPETRA sequence with Acc = 4, 8, 12, 16, 24, and 32. Images were compared against fully sampled PETRA data (Acc = 1) for structural similarity and normalized-mean-square-error. Qualitative and semi-quantitative analyses were performed to assess the effect of the acceleration on image artifacts, image quality, and delineation of anatomical structures at the knee.
Results: Even at high acceleration factors of Acc = 16 no aliasing artifacts were observed, and the anatomical details were preserved compared with the fully sampled data. The normalized-mean-square-error was less than 1% for Acc = 16, in which single point imaging acquisition time was reduced from 165 to 10 s, reducing the total scan time from 7.8 to 5.2 min. Semi-quantitative analyses suggest that Acc = 16 yields comparable diagnostic quality as the fully sampled data for knee imaging at a scan time of 5.2 min.
Conclusion: csPETRA allows for ultra-short T 2 ∗ imaging of the knee joint in clinically acceptable scan times while maintaining the image quality of original non-accelerated PETRA sequence.
(© 2022 The Authors. Magnetic Resonance in Medicine published by Wiley Periodicals LLC on behalf of International Society for Magnetic Resonance in Medicine.)

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies