Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Crystal structure of the α 1B -adrenergic receptor reveals molecular determinants of selective ligand recognition.

Tytuł:
Crystal structure of the α 1B -adrenergic receptor reveals molecular determinants of selective ligand recognition.
Autorzy:
Deluigi M; Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland.
Morstein L; Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland.
Schuster M; Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland.
Klenk C; Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland.
Merklinger L; Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland.; Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads, 2800 Kgs, Lyngby, Denmark.
Cridge RR; The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, 30 Royal Parade, Parkville, VIC, 3052, Australia.
de Zhang LA; The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, 30 Royal Parade, Parkville, VIC, 3052, Australia.; Department of Biochemistry and Pharmacology, The University of Melbourne, Parkville, VIC, 3010, Australia.
Klipp A; Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland.; Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 1-5/10, CH-8093, Zurich, Switzerland.
Vacca S; Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland.
Vaid TM; Department of Pharmaceutical Sciences, University of Illinois at Chicago, Chicago, IL, USA.
Mittl PRE; Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland.
Egloff P; Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland.
Eberle SA; Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland.; Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen, Denmark.
Zerbe O; Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland.
Chalmers DK; Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC, 3052, Australia.
Scott DJ; The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, 30 Royal Parade, Parkville, VIC, 3052, Australia. .; Department of Biochemistry and Pharmacology, The University of Melbourne, Parkville, VIC, 3010, Australia. .
Plückthun A; Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland. .
Źródło:
Nature communications [Nat Commun] 2022 Jan 19; Vol. 13 (1), pp. 382. Date of Electronic Publication: 2022 Jan 19.
Typ publikacji:
Journal Article; Research Support, Non-U.S. Gov't
Język:
English
Imprint Name(s):
Original Publication: [London] : Nature Pub. Group
MeSH Terms:
Crystallography, X-Ray*
Receptors, Adrenergic, alpha-1/*chemistry
Binding Sites ; HEK293 Cells ; Humans ; Ligands ; Lipids/chemistry ; Models, Molecular ; Quinazolines/chemistry ; Quinazolines/metabolism ; Quinoxalines/chemistry ; Quinoxalines/metabolism ; Receptors, Adrenergic, alpha-2/chemistry
References:
Bylund, D. B. et al. International union of pharmacology nomenclature of adrenoceptors. Pharmacol. Rev. 46, 121–136 (1994). (PMID: 7938162)
Hieble, J. P. et al. International union of pharmacology. X. recommendation for nomenclature of α 1 -adrenoceptors: consensus update. Pharmacol. Rev. 47, 267–270 (1995). (PMID: 7568329)
Pupo, A. S. & Minneman, K. P. Adrenergic pharmacology: focus on the central nervous system. CNS Spectr. 6, 656–662 (2001). (PMID: 1552061310.1017/S1092852900001346)
Finch, A. M. et al. In The Adrenergic Receptors: In The 21st Century (ed. Perez, D. M.) 25–147 (Humana Press, 2005).
Fuentes, A. V., Pineda, M. D. & Venkata, K. C. N. Comprehension of top 200 prescribed drugs in the US as a resource for pharmacy teaching, training and practice. Pharmacy 6, 43 (2018).
Philipp, M., Brede, M. & Hein, L. Physiological significance of α 2 -adrenergic receptor subtype diversity: one receptor is not enough. Am. J. Physiol. Regul. Integr. Comp. Physiol. 283, R287–R295 (2002). (PMID: 1212183910.1152/ajpregu.00123.2002)
Perez, D. M. & Doze, V. A. Cardiac and neuroprotection regulated by α 1 -adrenergic receptor subtypes. J. Recept. Signal Transduct. Res. 31, 98–110 (2011). (PMID: 21338248362329510.3109/10799893.2010.550008)
Akinaga, J., García-Sáinz, J. A. & Pupo, A. S. Updates in the function and regulation of α 1 -adrenoceptors. Br. J. Pharmacol. 176, 2343–2357 (2019). (PMID: 307406636592863)
Perez, D. M. α 1 -adrenergic receptors in neurotransmission, synaptic plasticity, and cognition. Front. Pharmacol. 11, 1563 (2020). (PMID: 10.3389/fphar.2020.581098)
Grisanti, L. A., Perez, D. M. & Porter, J. E. Modulation of immune cell function by α 1 -adrenergic receptor activation. Curr. Top. Membr. 67, 113–138 (2011). (PMID: 21771488362472810.1016/B978-0-12-384921-2.00006-9)
Staedtke, V. et al. Disruption of a self-amplifying catecholamine loop reduces cytokine release syndrome. Nature 564, 273–277 (2018). (PMID: 30542164651281010.1038/s41586-018-0774-y)
Konig, M. F. et al. Preventing cytokine storm syndrome in COVID-19 using α-1 adrenergic receptor antagonists. J. Clin. Invest. 130, 3345–3347 (2020). (PMID: 32352407732416410.1172/JCI139642)
Rose, L. et al. The association between alpha-1 adrenergic receptor antagonists and in-hospital mortality from COVID-19. Front. Med. 8, 637647 (2021). (PMID: 10.3389/fmed.2021.637647)
Philipp, M. et al. Placental α 2 -adrenoceptors control vascular development at the interface between mother and embryo. Nat. Genet. 31, 311–315 (2002). (PMID: 1206829910.1038/ng919)
Docherty, J. R. The pharmacology of α 1 -adrenoceptor subtypes. Eur. J. Pharmacol. 855, 305–320 (2019). (PMID: 3106743910.1016/j.ejphar.2019.04.047)
Michino, M. et al. What can crystal structures of aminergic receptors tell us about designing subtype-selective ligands? Pharmacol. Rev. 67, 198–213 (2015). (PMID: 25527701427907310.1124/pr.114.009944)
Kooistra, A. J., Kuhne, S., de Esch, I. J., Leurs, R. & de Graaf, C. A structural chemogenomics analysis of aminergic GPCRs: lessons for histamine receptor ligand design. Br. J. Pharmacol. 170, 101–126 (2013). (PMID: 23713847376485310.1111/bph.12248)
Proudman, R. G. W., Pupo, A. S. & Baker, J. G. The affinity and selectivity of α-adrenoceptor antagonists, antidepressants, and antipsychotics for the human α1A, α1B, and α1D-adrenoceptors. Pharmacol. Res. Perspect. 8, e00602 (2020).
Wang, S. et al. D 4 dopamine receptor high-resolution structures enable the discovery of selective agonists. Science 358, 381–386 (2017). (PMID: 29051383585617410.1126/science.aan5468)
Wang, S. et al. Structure of the D2 dopamine receptor bound to the atypical antipsychotic drug risperidone. Nature 555, 269–273 (2018). (PMID: 29466326584354610.1038/nature25758)
Zhou, Y., Cao, C., He, L. L., Wang, X. P. & Zhang, X. J. C. Crystal structure of dopamine receptor D4 bound to the subtype selective ligand, L745870. eLife 8, e48822 (2019). (PMID: 31750832687221210.7554/eLife.48822)
Fan, L. et al. Haloperidol bound D 2 dopamine receptor structure inspired the discovery of subtype selective ligands. Nat. Commun. 11, 1074 (2020). (PMID: 32103023704427710.1038/s41467-020-14884-y)
Wacker, D. et al. Crystal structure of an LSD-bound human serotonin receptor. Cell 168, 377–389 (2017). (PMID: 28129538528931110.1016/j.cell.2016.12.033)
Thal, D. M. et al. Crystal structures of the M1 and M4 muscarinic acetylcholine receptors. Nature 531, 335–340 (2016). (PMID: 26958838491538710.1038/nature17188)
Liu, H. T. et al. Structure-guided development of selective M3 muscarinic acetylcholine receptor antagonists. Proc. Natl Acad. Sci. USA 115, 12046–12050 (2018). (PMID: 30404914625519410.1073/pnas.1813988115)
Chen, X. Y. et al. Molecular mechanism for ligand recognition and subtype selectivity of α 2C adrenergic receptor. Cell Rep. 29, 2936–2943 (2019). (PMID: 3180106110.1016/j.celrep.2019.10.112)
Vass, M. et al. Aminergic GPCR-ligand interactions: a chemical and structural map of receptor mutation data. J. Med. Chem. 62, 3784–3839 (2019). (PMID: 3035100410.1021/acs.jmedchem.8b00836)
Cherezov, V. et al. High-resolution crystal structure of an engineered human β 2 -adrenergic G protein-coupled receptor. Science 318, 1258–1265 (2007). (PMID: 17962520258310310.1126/science.1150577)
Rasmussen, S. G. et al. Crystal structure of the β 2 adrenergic receptor-G s protein complex. Nature 477, 549–555 (2011). (PMID: 21772288318418810.1038/nature10361)
Ring, A. M. et al. Adrenaline-activated structure of β 2 -adrenoceptor stabilized by an engineered nanobody. Nature 502, 575–579 (2013). (PMID: 24056936382204010.1038/nature12572)
Warne, T. et al. Structure of a β 1 -adrenergic G-protein-coupled receptor. Nature 454, 486–491 (2008). (PMID: 18594507292305510.1038/nature07101)
Moukhametzianov, R. et al. Two distinct conformations of helix 6 observed in antagonist-bound structures of a β 1 -adrenergic receptor. Proc. Natl Acad. Sci. USA 108, 8228–8232 (2011). (PMID: 21540331310093310.1073/pnas.1100185108)
Warne, T., Edwards, P. C., Doré, A. S., Leslie, A. G. W. & Tate, C. G. Molecular basis for high-affinity agonist binding in GPCRs. Science 364, 775–778 (2019). (PMID: 31072904658655610.1126/science.aau5595)
Xu, X. Y. et al. Binding pathway determines norepinephrine selectivity for the human β 1 AR over β 2 AR. Cell Res. 31, 569–579 (2020).
Qu, L. et al. Structural basis of the diversity of adrenergic receptors. Cell Rep. 29, 2929–2935 (2019). (PMID: 3180106010.1016/j.celrep.2019.10.088)
Yuan, D. et al. Activation of the α 2B adrenoceptor by the sedative sympatholytic dexmedetomidine. Nat. Chem. Biol. 16, 507–512 (2020). (PMID: 3215253810.1038/s41589-020-0492-2)
Giardinà, D. et al. Synthesis and biological profile of the enantiomers of [4-(4-amino-6,7-dimethoxyquinazolin-2-yl)-cis-octahydroquinoxalin-1-yl] furan-2-ylmethanone (cyclazosin), a potent competitive α1B-adrenoceptor antagonist. J. Med. Chem. 39, 4602–4607 (1996).
Giardinà, D. et al. Absolute configuration of the α 1B -adrenoceptor antagonist (+)-cyclazosin. Il Farm. 59, 965–969 (2004). (PMID: 10.1016/j.farmac.2004.07.013)
Rossier, O., Abuin, L., Fanelli, F., Leonardi, A. & Cotecchia, S. Inverse agonism and neutral antagonism at α 1a - and α 1b -adrenergic receptor subtypes. Mol. Pharmacol. 56, 858–866 (1999). (PMID: 1053138810.1124/mol.56.5.858)
Ballesteros, J. A. & Weinstein, H. Integrated methods for the construction of three-dimensional models and computational probing of structure-function relations in G protein-coupled receptors. In Methods in Neurosciences (ed. Sealfon, S. C.). Vol. 25, 366–428 (Academic Press, 1995).
Yong, K. J. et al. Determinants of ligand subtype-selectivity at α 1A -adrenoceptor revealed using saturation transfer difference (STD) NMR. ACS Chem. Biol. 13, 1090–1102 (2018). (PMID: 2953725610.1021/acschembio.8b00191)
Scott, D. J. & Plückthun, A. Direct molecular evolution of detergent-stable G protein-coupled receptors using polymer encapsulated cells. J. Mol. Biol. 425, 662–677 (2013). (PMID: 2316456810.1016/j.jmb.2012.11.015)
Mittl, P. R., Ernst, P. & Plückthun, A. Chaperone-assisted structure elucidation with DARPins. Curr. Opin. Struct. Biol. 60, 93–100 (2020). (PMID: 3191836110.1016/j.sbi.2019.12.009)
Deluigi, M. et al. Complexes of the neurotensin receptor 1 with small-molecule ligands reveal structural determinants of full, partial, and inverse agonism. Sci. Adv. 7, eabe5504 (2021). (PMID: 33571132784014310.1126/sciadv.abe5504)
Alexandrov, A. I., Mileni, M., Chien, E. Y., Hanson, M. A. & Stevens, R. C. Microscale fluorescent thermal stability assay for membrane proteins. Structure 16, 351–359 (2008). (PMID: 1833421010.1016/j.str.2008.02.004)
Tickle, I. J. et al. STARANISO. http://staraniso.globalphasing.org (2018).
Ibrahim, P., Wifling, D. & Clark, T. Universal activation index for class A GPCRs. J. Chem. Inf. Model. 59, 3938–3945 (2019). (PMID: 3144891010.1021/acs.jcim.9b00604)
Campbell, A. P., MacDougall, I. J., Griffith, R. & Finch, A. M. An aspartate in the second extracellular loop of the α 1B adrenoceptor regulates agonist binding. Eur. J. Pharmacol. 733, 90–96 (2014). (PMID: 2469026010.1016/j.ejphar.2014.03.034)
Campbell, S. F., Davey, M. J., Hardstone, J. D., Lewis, B. N. & Palmer, M. J. 2,4-diamino-6,7-dimethoxyquinazolines. 1. 2-[4-(1,4-benzodioxan-2-ylcarbonyl)piperazin-1-yl] derivatives as α1-adrenoceptor antagonists and antihypertensive agents. J. Med. Chem. 30, 49–57 (1987).
Bordner, J., Campbell, S. F., Palmer, M. J. & Tute, M. S. 1,3-diamino-6,7-dimethoxyisoquinoline derivatives as potential α 1 -adrenoceptor antagonists. J. Med. Chem. 31, 1036–1039 (1988). (PMID: 289624610.1021/jm00400a026)
Matijssen, C., Kinsella, G. K., Watson, G. W. & Rozas, I. Computational study of the proton affinity and basicity of structurally diverse α 1 -adrenoceptor ligands. J. Phys. Org. Chem. 25, 351–360 (2012). (PMID: 10.1002/poc.1940)
Milligan, C. M. et al. [ H]RS79948-197 binding to human, rat, guinea pig and pig α 2A -, α 2B - and α 2C -adrenoceptors. Comparison with MK912, RX821002, rauwolscine and yohimbine. Eur. J. Pharmacol. 343, 93–101 (1998). (PMID: 955171910.1016/S0014-2999(97)01521-5)
Blaxall, H. S., Murphy, T. J., Baker, J. C., Ray, C. & Bylund, D. B. Characterization of the alpha-2C adrenergic receptor subtype in the opossum kidney and in the OK cell line. J. Pharmacol. Exp. Ther. 259, 323–329 (1991). (PMID: 1656026)
Weinshank, R. L. et al. Cloning, expression, and pharmacological characterization of a human α 2B -adrenergic receptor. Mol. Pharmacol. 38, 681–688 (1990). (PMID: 2172775)
Ruffolo, R. R., Bondinell, W. & Hieble, J. P. α- and β-adrenoceptors: from the gene to the clinic. 2. Structure-activity relationships and therapeutic applications. J. Med. Chem. 38, 3681–3716 (1995). (PMID: 756290210.1021/jm00019a001)
Giardinà, D., Crucianelli, M., Melchiorre, C., Taddei, C. & Testa, R. Receptor binding profile of cyclazosin, a new α 1B -adrenoceptor antagonist. Eur. J. Pharmacol. 287, 13–16 (1995). (PMID: 866602010.1016/0014-2999(95)00471-7)
Piscitelli, C. L., Kean, J., de Graaf, C. & Deupi, X. A molecular pharmacologist’s guide to G protein-coupled receptor crystallography. Mol. Pharmacol. 88, 536–551 (2015). (PMID: 2615219610.1124/mol.115.099663)
Schuster, M. et al. Optimizing the α 1B -adrenergic receptor for solution NMR studies. Biochim. Biophys. Acta Biomembr. 1862, 183354 (2020). (PMID: 3241344310.1016/j.bbamem.2020.183354)
Suryanarayana, S., Daunt, D. A., Vonzastrow, M. & Kobilka, B. K. A point mutation in the seventh hydrophobic domain of the α 2 adrenergic receptor increases its affinity for a family of β receptor antagonists. J. Biol. Chem. 266, 15488–15492 (1991). (PMID: 167839010.1016/S0021-9258(18)98642-4)
Simpson, M. M. et al. Dopamine D4/D2 receptor selectivity is determined by a divergent aromatic microdomain contained within the second, third, and seventh membrane-spanning segments. Mol. Pharmacol. 56, 1116–1126 (1999). (PMID: 1057003810.1124/mol.56.6.1116)
Gregory, K. J., Hall, N. E., Tobin, A. B., Sexton, P. M. & Christopoulos, A. Identification of orthosteric and allosteric site mutations in M 2 muscarinic acetylcholine receptors that contribute to ligand-selective signaling bias. J. Biol. Chem. 285, 7459–7474 (2010). (PMID: 20051519284419410.1074/jbc.M109.094011)
Leach, K., Davey, A. E., Felder, C. C., Sexton, P. M. & Christopoulos, A. The role of transmembrane domain 3 in the actions of orthosteric, allosteric, and atypical agonists of the M 4 muscarinic acetylcholine receptor. Mol. Pharmacol. 79, 855–865 (2011). (PMID: 2130072210.1124/mol.111.070938)
Keov, P. et al. Molecular mechanisms of bitopic ligand engagement with the M 1 muscarinic acetylcholine receptor. J. Biol. Chem. 289, 23817–23837 (2014). (PMID: 25006252415606110.1074/jbc.M114.582874)
Abdul-Ridha, A. et al. Molecular determinants of allosteric modulation at the M 1 muscarinic acetylcholine receptor. J. Biol. Chem. 289, 6067–6079 (2014). (PMID: 24443568393767310.1074/jbc.M113.539080)
Zhao, M. M., Hwa, J. & Perez, D. M. Identification of critical extracellular loop residues involved in α 1 -adrenergic receptor subtype-selective antagonist binding. Mol. Pharmacol. 50, 1118–1126 (1996). (PMID: 8913343)
Sarkar, C. A. et al. Directed evolution of a G protein-coupled receptor for expression, stability, and binding selectivity. Proc. Natl Acad. Sci. USA 105, 14808–14813 (2008). (PMID: 18812512256744910.1073/pnas.0803103105)
Wu, Y. F. et al. Rigidly connected multispecific artificial binders with adjustable geometries. Sci. Rep. 7, 11217 (2017). (PMID: 28894181559385610.1038/s41598-017-11472-x)
Ernst, P. et al. Rigid fusions of designed helical repeat binding proteins efficiently protect a binding surface from crystal contacts. Sci. Rep. 9, 16162 (2019). (PMID: 31700118683808210.1038/s41598-019-52121-9)
Leaver-Fay, A. et al. Rosetta3: an object-oriented software suite for the simulation and design of macromolecules. Methods Enzymol. 487, 545–574 (2011). (PMID: 21187238408381610.1016/B978-0-12-381270-4.00019-6)
Egloff, P., Deluigi, M., Heine, P., Balada, S. & Plückthun, A. A cleavable ligand column for the rapid isolation of large quantities of homogeneous and functional neurotensin receptor 1 variants from E. coli. Protein Expr. Purif. 108, 106–114 (2015). (PMID: 2546195810.1016/j.pep.2014.10.006)
Basu, S. et al. Automated data collection and real-time data analysis suite for serial synchrotron crystallography. J. Synchrotron Radiat. 26, 244–252 (2019). (PMID: 30655492633788210.1107/S1600577518016570)
Kabsch, W. Automatic processing of rotation diffraction data from crystals of initially unknown symmetry and cell constants. J. Appl. Crystallogr. 26, 795–800 (1993). (PMID: 10.1107/S0021889893005588)
Evans, P. R. & Murshudov, G. N. How good are my data and what is the resolution? Acta Crystallogr. D. Biol. Crystallogr. 69, 1204–1214 (2013). (PMID: 23793146368952310.1107/S0907444913000061)
Bailey, S. The CCP4 suite: programs for protein crystallography. Acta Crystallogr. D. Biol. Crystallogr. 50, 760–763 (1994). (PMID: 10.1107/S0907444994003112)
McCoy, A. J. et al. Phaser crystallographic software. J. Appl. Crystallogr. 40, 658–674 (2007). (PMID: 19461840248347210.1107/S0021889807021206)
Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D. 60, 2126–2132 (2004). (PMID: 1557276510.1107/S0907444904019158)
Bricogne, G. et al. BUSTER v.2.10.3. http://www.globalphasing.com (2020).
Murshudov, G. N. et al. REFMAC5 for the refinement of macromolecular crystal structures. Acta Crystallogr. D. 67, 355–367 (2011). (PMID: 21460454306975110.1107/S0907444911001314)
Chen, V. B. et al. MolProbity: all-atom structure validation for macromolecular crystallography. Acta Crystallogr. D. 66, 12–21 (2010). (PMID: 2005704410.1107/S0907444909042073)
Cheng, Y. & Prusoff, W. H. Relationship between the inhibition constant (K i ) and the concentration of inhibitor which causes 50 per cent inhibition (I 50 ) of an enzymatic reaction. Biochem. Pharmacol. 22, 3099–3108 (1973). (PMID: 420258110.1016/0006-2952(73)90196-2)
Ehrenmann, J. et al. High-resolution crystal structure of parathyroid hormone 1 receptor in complex with a peptide agonist. Nat. Struct. Mol. Biol. 25, 1086–1092 (2018). (PMID: 3045543410.1038/s41594-018-0151-4)
Bowers, K. J. et al. Scalable algorithms for molecular dynamics simulations on commodity clusters. in SC ‘06: Proceedings of the 2006 ACM/IEEE Conference on Supercomputing 43–43 (Tampa, 2006).
Vaid, T. M., Chalmers, D. K., Scott, D. J. & Gooley, P. R. INPHARMA-based determination of ligand binding modes at α 1 -adrenergic receptors explains the molecular basis of subtype selectivity. Chem. Eur. J. 26, 11796–11805 (2020). (PMID: 3229180110.1002/chem.202000642)
Roos, K. et al. OPLS3e: extending force field coverage for drug-like small molecules. J. Chem. Theory Comput. 15, 1863–1874 (2019). (PMID: 3076890210.1021/acs.jctc.8b01026)
Humphrey, W., Dalke, A. & Schulten, K. VMD: visual molecular dynamics. J. Mol. Graph. Model. 14, 33–38 (1996). (PMID: 10.1016/0263-7855(96)00018-5)
Substance Nomenclature:
0 (Ligands)
0 (Lipids)
0 (Quinazolines)
0 (Quinoxalines)
0 (Receptors, Adrenergic, alpha-1)
0 (Receptors, Adrenergic, alpha-2)
139953-73-4 (cyclazosin)
Entry Date(s):
Date Created: 20220120 Date Completed: 20220215 Latest Revision: 20221024
Update Code:
20240105
PubMed Central ID:
PMC8770593
DOI:
10.1038/s41467-021-27911-3
PMID:
35046410
Czasopismo naukowe
α-adrenergic receptors (αARs) are G protein-coupled receptors that regulate vital functions of the cardiovascular and nervous systems. The therapeutic potential of αARs, however, is largely unexploited and hampered by the scarcity of subtype-selective ligands. Moreover, several aminergic drugs either show off-target binding to αARs or fail to interact with the desired subtype. Here, we report the crystal structure of human α 1B AR bound to the inverse agonist (+)-cyclazosin, enabled by the fusion to a DARPin crystallization chaperone. The α 1B AR structure allows the identification of two unique secondary binding pockets. By structural comparison of α 1B AR with α 2 ARs, and by constructing α 1B AR-α 2C AR chimeras, we identify residues 3.29 and 6.55 as key determinants of ligand selectivity. Our findings provide a basis for discovery of α 1B AR-selective ligands and may guide the optimization of aminergic drugs to prevent off-target binding to αARs, or to elicit a selective interaction with the desired subtype.
(© 2022. The Author(s).)

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies