Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Effects of one-dimensional nanomaterial polyaniline nanorods on earthworm biomarkers and soil enzymes.

Tytuł:
Effects of one-dimensional nanomaterial polyaniline nanorods on earthworm biomarkers and soil enzymes.
Autorzy:
Shu W; College of Environmental Science and Engineering, Donghua University, Shanghai, China.
Yang Z; College of Environmental Science and Engineering, Donghua University, Shanghai, China. .
Xu Z; College of Environmental Science and Engineering, Donghua University, Shanghai, China.
Zhu T; College of Environmental Science and Engineering, Donghua University, Shanghai, China.
Tian X; College of Environmental Science and Engineering, Donghua University, Shanghai, China.
Yang Y; College of Environmental Science and Engineering, Donghua University, Shanghai, China.
Źródło:
Environmental science and pollution research international [Environ Sci Pollut Res Int] 2022 May; Vol. 29 (23), pp. 35217-35229. Date of Electronic Publication: 2022 Jan 20.
Typ publikacji:
Journal Article
Język:
English
Imprint Name(s):
Publication: <2013->: Berlin : Springer
Original Publication: Landsberg, Germany : Ecomed
MeSH Terms:
Nanostructures*/toxicity
Nanotubes*
Oligochaeta*
Soil Pollutants*/analysis
Aniline Compounds ; Animals ; Antioxidants/metabolism ; Biomarkers/metabolism ; Catalase/metabolism ; Malondialdehyde/metabolism ; Soil ; Superoxide Dismutase/metabolism
References:
Batley GE, Kirby JK, McLaughlin MJ (2013) Fate and Risks of Nanomaterials in Aquatic and Terrestrial Environments. Accounts Chem Res 46:854–862. (PMID: 10.1021/ar2003368)
Bossuyt H, Six J, Hendrix PF (2005) Protection of soil carbon by microaggregates within earthworm casts. Soil Biol Biochem 37:251–258. (PMID: 10.1016/j.soilbio.2004.07.035)
Calisi A, Grimaldi A, Leomanni A, Lionetto MG, Dondero F, Schettino T (2016) Multibiomarker response in the earthworm Eisenia fetida as tool for assessing multi-walled carbon nanotube ecotoxicity. Ecotoxicology 25:677–687. (PMID: 10.1007/s10646-016-1626-x)
Chen M, Zhou S, Zhu Y, Sun Y, Zeng G, Yang C, Xu P, Yan M, Liu Z, Zhang W (2018) Toxicity of carbon nanomaterials to plants, animals and microbes: Recent progress from 2015-present. Chemosphere 206:255–264. (PMID: 10.1016/j.chemosphere.2018.05.020)
Chung H, Son Y, Yoon TK, Kim S, Kim W (2011) The effect of multi-walled carbon nanotubes on soil microbial activity. Ecotoxicol Environ Saf 74:569–575. (PMID: 10.1016/j.ecoenv.2011.01.004)
Ebrahim S, Soliman M, Anas M, Hafez M, Abdel-Fattah TM (2013) Dye-Sensitized Solar Cell Based on Polyaniline/Multiwalled Carbon Nanotubes Counter Electrode. Int J Photoenergy 2013:1–6. (PMID: 10.1155/2013/906820)
Ebrahim S, Shokry A, Khalil MMA, Ibrahim H, Soliman M (2020) Polyaniline/Ag nanoparticles/graphene oxide nanocomposite fluorescent sensor for recognition of chromium (VI) ions. Sci Rep 10:13617. (PMID: 10.1038/s41598-020-70678-8)
Ebrahim SM (2008) Fabrication of Schottky diode based on Zn electrode and polyaniline doped with 2-acrylamido-2-methyl-1-propanesulfonic acid sodium salt. J Polym Res 16:481–487. (PMID: 10.1007/s10965-008-9251-x)
Eivazi F, Afrasiabi Z, Jose E (2018) Effects of Silver Nanoparticles on the Activities of Soil Enzymes Involved in Carbon and Nutrient Cycling. Pedosphere 28:209–214. (PMID: 10.1016/S1002-0160(18)60019-0)
Ellman GL, Courtney KD, Andres V, Featherstone RM (1961) A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem Pharmacol 7:88–95. (PMID: 10.1016/0006-2952(61)90145-9)
Fu X, Wang S, Xia Z, Li Y, Jiang L, Sun G (2016) Aligned polyaniline nanorods in situ grown on gas diffusion layer and their application in polymer electrolyte membrane fuel cells. Int J Hydrogen Energ 41:3655–3663. (PMID: 10.1016/j.ijhydene.2015.12.193)
Galaktionova L, Gavrish I, Lebedev S (2020) Bioeffects of Zn and Cu Nanoparticles in Soil Systems. Toxicol Environ Heal Sci 11:259–270. (PMID: 10.1007/s13530-019-0413-5)
Gholami M, Jonidi-Jafari A, Farzadkia M, Esrafili A, Godini K, Shirzad-Siboni M (2021) Photocatalytic removal of bentazon by copper doped zinc oxide nanorods: Reaction pathways and toxicity studies. J Environ Manage 294:112962. (PMID: 10.1016/j.jenvman.2021.112962)
Guo Z, Zhang P, Luo Y, Xie HQ, Chakraborty S, Monikh FA, Bu L, Liu Y, Ma Y, Zhang Z, Valsami-Jones E, Zhao B, Lynch I (2020) Intranasal exposure to ZnO nanoparticles induces alterations in cholinergic neurotransmission in rat brain. Nano Today 35.
Hinojosa MB, García-Ruíz R, Viñegla B, Carreira JA (2004) Microbiological rates and enzyme activities as indicators of functionality in soils affected by the Aznalcóllar toxic spill. Soil Biol Biochem 36:1637–1644. (PMID: 10.1016/j.soilbio.2004.07.006)
Hu C, Li M, Wang W, Cui Y, Chen J, Yang L (2012) Ecotoxicity of silver nanoparticles on earthworm Eisenia fetida: responses of the antioxidant system, acid phosphatase and ATPase. Toxicol Environ Chem 94:732–741. (PMID: 10.1080/02772248.2012.668020)
Hu C, Cai Y, Wang W, Cui Y, Li M (2013) Toxicological effects of multi-walled carbon nanotubes adsorbed with nonylphenol on earthworm Eisenia fetida. Environ Sci Process Impacts 15:2125–2130. (PMID: 10.1039/c3em00376k)
Hu CW, Li M, Cui YB, Li DS, Chen J, Yang LY (2010) Toxicological effects of TiO 2 and ZnO nanoparticles in soil on earthworm Eisenia fetida. Soil Biolo Biochem 42:586–591. (PMID: 10.1016/j.soilbio.2009.12.007)
Hu Q, Sun D, Ma Y, Qiu B, Guo Z (2017) Conductive polyaniline nanorods enhanced methane production from anaerobic wastewater treatment. Polymer 120:236–243. (PMID: 10.1016/j.polymer.2017.05.073)
Ibarra LE, Tarres L, Bongiovanni S, Barbero CA, Kogan MJ, Rivarola VA, Bertuzzi ML, Yslas EI (2015) Assessment of polyaniline nanoparticles toxicity and teratogenicity in aquatic environment using Rhinella arenarum model. Ecotoxicol Environ Saf 114:84–92. (PMID: 10.1016/j.ecoenv.2015.01.013)
Jiang X, Yang Y, Liu P, Li M (2020) Transcriptomics and metabolomics reveal Ca overload and osmotic imbalance-induced neurotoxicity in earthworms (Eisenia fetida) under tri-n-butyl phosphate exposure. Sci Total Environ 748:142169.
Jin L, Son Y, Yoon TK, Kang YJ, Kim W, Chung H (2013) High concentrations of single-walled carbon nanotubes lower soil enzyme activity and microbial biomass. Ecotoxicol Environ Saf 88:9–15. (PMID: 10.1016/j.ecoenv.2012.10.031)
Kim SH, Oh KW, Choi JH (2010) Preparation and self-assembly of polyaniline nanorods and their application as electroactive actuators. J Appl Polym Sci 116:2601–2609.
Koelle GBE (2013) Cholinesterases and anticholinesterase agents, 15. Springer Science & Business Media.
Kwak JI, An Y-J (2015) Ecotoxicological Effects of Nanomaterials on Earthworms: A Review. Hum Ecol Risk Assess Int J 21:1566–1575. (PMID: 10.1080/10807039.2014.960302)
Kwak JI, Park JW, An YJ (2017) Effects of silver nanowire length and exposure route on cytotoxicity to earthworms. Environ Sci Pollut Res Int 24:14516–14524. (PMID: 10.1007/s11356-017-9054-x)
Lammertyn S, Masín CE, Zalazar CS, Fernandez ME (2021) Biomarkers response and population biological parameters in the earthworm Eisenia fetida after short term exposure to atrazine herbicide. Ecological Indicators 121.
Li L, Du J, Li J, Xu H, Zhang Z (2006) Study on CMC glycation force method to determine cellulose enzyme activity conditions (in Chinese). Feed Industry 27:50–52.
Li X, Wang M, Chen W, Jiang R (2019) Evaluation of combined toxicity of Siduron and cadmium on earthworm (Eisenia fetida) using Biomarker Response Index. Sci Total Environ 646:893–901. (PMID: 10.1016/j.scitotenv.2018.07.380)
Li Y, Wang B, Ying S, Li C, Zhang Z, Gao S, Zhou X (2011) Environmental toxicology research techniques and methods (in Chinese). Harbin Institute of Technology Press, Changchun.
Liu T, Wang X, Chen D, Li Y, Wang F (2018) Growth, reproduction and biochemical toxicity of chlorantraniliprole in soil on earthworms (Eisenia fetida). Ecotoxicol Environ Saf 150:18–25. (PMID: 10.1016/j.ecoenv.2017.12.010)
Melo JB, Agostinho P, Oliveira CR (2003) Involvement of oxidative stress in the enhancement of acetylcholinesterase activity induced by amyloid beta-peptide. Neuroscience Research 45:117–127. (PMID: 10.1016/S0168-0102(02)00201-8)
Mijangos I, Albizu I, Epelde L, Amezaga I, Mendarte S, Garbisu C (2010) Effects of liming on soil properties and plant performance of temperate mountainous grasslands. J Environ Manage 91:2066–2074. (PMID: 10.1016/j.jenvman.2010.05.011)
Neves JD, Vizuete AF, Nicola F, Da Re C, Rodrigues AF, Schmitz F, Mestriner RG, Aristimunha D, Wyse ATS, Netto CA (2018) Glial glutamate transporters expression, glutamate uptake, and oxidative stress in an experimental rat model of intracerebral hemorrhage. Neurochem Int 116:13–21. (PMID: 10.1016/j.neuint.2018.03.003)
Newman MC (2009) Fundamentals of ecotoxicology. CRC Press. (PMID: 10.1201/9781439883129)
OECD (1984) Test No. 207: Earthworm, Acute Toxicity Tests[S]. Paris.
Quan W, Xudong W, Min X, Lou X, Fan X (2019) One-dimensional and two-dimensional nanomaterials for the detection of multiple biomolecules. Chinese Chem Lett 30:1557–1564. (PMID: 10.1016/j.cclet.2019.06.025)
Saleh TA (2020) Nanomaterials: Classification, properties, and environmental toxicities. Environ Technol Inno 20:101067. (PMID: 10.1016/j.eti.2020.101067)
Sanchez-Hernandez JC, Sandoval M, Pierart A (2017) Short-term response of soil enzyme activities in a chlorpyrifos-treated mesocosm: Use of enzyme-based indexes. Ecol Indic 73:525–535. (PMID: 10.1016/j.ecolind.2016.10.022)
Sanchez-Hernandez JC, Notario Del Pino J, Capowiez Y, Mazzia C, Rault M (2018) Soil enzyme dynamics in chlorpyrifos-treated soils under the influence of earthworms. Sci Total Environ 612:1407–1416. (PMID: 10.1016/j.scitotenv.2017.09.043)
Sanchez-Hernandez JC, Rios JM, Attademo AM, Malcevschi A, Andrade Cares X (2019) Assessing biochar impact on earthworms: Implications for soil quality promotion. J Hazard Mater 366:582–591. (PMID: 10.1016/j.jhazmat.2018.12.032)
Sanchez W, Burgeot T, Porcher JM (2013) A novel “Integrated Biomarker Response” calculation based on reference deviation concept. Environ Sci Pollut Res Int 20:2721–2725. (PMID: 10.1007/s11356-012-1359-1)
Shaker Mabrouk E, MoatazMohmed S, Mona MahmoundAbd E-L (2009) Blend of Nylon 6 and Polyaniline Doped with Sulfanilic Acid and its Schottky Diode. High Perform Polym 22:377–391. (PMID: 10.1177/0954008309103796)
Shokry A, El Tahan A, Ibrahim H, Soliman M, Ebrahim S (2019a) Polyaniline/akaganeite superparamagnetic nanocomposite for cadmium uptake from polluted water. Desalin Water Treat 171:205–215. (PMID: 10.5004/dwt.2019.24835)
Shokry A, El Tahan A, Ibrahim H, Soliman M, Ebrahim S (2019b) The development of a ternary nanocomposite for the removal of Cr(vi) ions from aqueous solutions. RSC Adv 9:39187–39200. (PMID: 10.1039/C9RA08298K)
Shokry A, Khalil M, Ibrahim H, Soliman M, Ebrahim S (2021) Acute toxicity assessment of polyaniline/Ag nanoparticles/graphene oxide quantum dots on Cypridopsis vidua and Artemia salina. Sci Rep 11:5336. (PMID: 10.1038/s41598-021-84903-5)
Stefan M, Marklund G (1974) Involvement of the Superoxide Anion Radical in the Autoxidation of Pyrogallol and a Convenient Assay for Superoxide Dismutase. Eur J Biochem 47:469–474. (PMID: 10.1111/j.1432-1033.1974.tb03714.x)
Suba Lakshmi M, Wabaidur SM, Alothman ZA, Ragupathy D (2020) Novel 1D polyaniline nanorods for efficient electrochemical supercapacitors: A facile and green approach. Synthetic Met 270.
Tatsi K, Shaw BJ, Hutchinson TH, Handy RD (2018) Copper accumulation and toxicity in earthworms exposed to CuO nanomaterials: Effects of particle coating and soil ageing. Ecotoxicol Environ Saf 166:462–473. (PMID: 10.1016/j.ecoenv.2018.09.054)
Tuantranont A (2013) Applications of nanomaterials in sensors and diagnostics. Springer series on chemical sensors and biosensors. Springer, Berlin Heidelberg, 2014.
Wang K, Pang S, Mu X, Qi S, Li D, Cui F, Wang C (2015) Biological response of earthworm, Eisenia fetida, to five neonicotinoid insecticides. Chemosphere 132:120–126. (PMID: 10.1016/j.chemosphere.2015.03.002)
Wang Y, Wu X, Zhang W (2016) Synthesis and high-performance microwave absorption of graphene foam/polyaniline nanorods. Mater Lett 165:71–74. (PMID: 10.1016/j.matlet.2015.11.116)
Wang Y (2018) Experimental techniques for ecological remediation of soil pollution (in Chinese). Science Press of China, Beijing.
Wang Z, Zhao J, Li F, Gao D, Xing B (2009) Adsorption and inhibition of acetylcholinesterase by different nanoparticles. Chemosphere 77:67–73. (PMID: 10.1016/j.chemosphere.2009.05.015)
Wen S, Liu C, Wang Y, Xue Y, Wang X, Wang J, Xia X, Kim YM (2021) Oxidative stress and DNA damage in earthworm (Eisenia fetida) induced by triflumezopyrim exposure. Chemosphere 264:128499.
Xu K, Wang X, Lu C, Liu Y, Zhang D, Cheng J (2021a) Toxicity of three carbon-based nanomaterials to earthworms: Effect of morphology on biomarkers, cytotoxicity, and metabolomics. Sci Total Environ 777.
Xu XB, Shi YJ, Lu YL, Zheng XQ, Ritchie RJ (2015) Growth inhibition and altered gene transcript levels in earthworms (Eisenia fetida) exposed to 2,2’,4,4’-tetrabromodiphenyl ether. Arch Environ Contam Toxicol 69:1–7. (PMID: 10.1007/s00244-014-0125-4)
Xu Z, Yang Z, Zhu T, Shu W, Geng L (2021b) Ecological improvement of antimony and cadmium contaminated soil by earthworm Eisenia fetida: Soil enzyme and microorganism diversity. Chemosphere 273:129496.
Yan X, Wang J, Zhu L, Wang J, Li S, Kim YM (2021) Oxidative stress, growth inhibition, and DNA damage in earthworms induced by the combined pollution of typical neonicotinoid insecticides and heavy metals. Sci Total Environ 754:141873. (PMID: 10.1016/j.scitotenv.2020.141873)
Yang L, Yang L, Ding L, Deng F, Luo X-B, Luo S-L (2019) Principles for the Application of Nanomaterials in Environmental Pollution Control and Resource Reutilization, Nanomaterials for the Removal of Pollutants and Resource Reutilization, pp. 1–23.
Yang X, Gong J, Zhang X, Huang Y, Zhang W, Yang J, Lin J, Chai Y, Liu J (2021a) Evaluation of the combined toxicity of multi-walled carbon nanotubes and cadmium on earthworms in soil using multi-level biomarkers. Ecotoxicol Environ Saf 221:112441.
Yang X, Gong J, Zhang X, Zhang W, Li D, Lin J, Li X, Chai Y, Liu J (2021b) The responses of the growth, cytochrome P450 isoenzymes activities and the metabolomics in earthworms to sublethal doses of dichlorvos in soil. Ecotox. Environmental Safety 207:111547.
Yslas EI, Ibarra LE, Peralta DO, Barbero CA, Rivarola VA, Bertuzzi ML (2012) Polyaniline nanofibers: acute toxicity and teratogenic effect on Rhinella arenarum embryos. Chemosphere 87:1374–1380. (PMID: 10.1016/j.chemosphere.2012.02.033)
Yuan Z, Zhang J, Zhao L, Li J, Liu H (2017) Effects of perfluorooctanoic acid and perfluorooctane sulfonate on acute toxicity, superoxide dismutase, and cellulase activity in the earthworm Eisenia fetida. Environ Sci Pollut Res Int 24:18188–18194. (PMID: 10.1007/s11356-017-9477-4)
Zare EN, Makvandi P, Ashtari B, Rossi F, Motahari A, Perale G (2020) Progress in Conductive Polyaniline-Based Nanocomposites for Biomedical Applications: A Review. J Med Chem 63:1–22. (PMID: 10.1021/acs.jmedchem.9b00803)
Zhai Y, Hunting ER, Wouters M, Peijnenburg WJ, Vijver MG (2016) Silver nanoparticles, ions, and shape governing soil microbial functional diversity: Nano shapes micro. Front Microbiol 7:1123. (PMID: 10.3389/fmicb.2016.01123)
Zhang XJ, Yang L, Zhao Q, Caen JP, He HY, Jin QH, Guo LH, Alemany M, Zhang LY, Shi YF (2002) Induction of acetylcholinesterase expression during apoptosis in various cell types. Cell Death & Differentiation 9:790–800. (PMID: 10.1038/sj.cdd.4401034)
Zhang Q, Huang JQ, Qian WZ, Zhang YY, Wei F (2013) The road for nanomaterials industry: a review of carbon nanotube production, post-treatment, and bulk applications for composites and energy storage. Small 9:1237–1265. (PMID: 10.1002/smll.201203252)
Zhang Q, Zhang B, Wang C (2014) Ecotoxicological effects on the earthworm Eisenia fetida following exposure to soil contaminated with imidacloprid. Environ Sci Pollut Res Int 21:12345–12353. (PMID: 10.1007/s11356-014-3178-z)
Zhao S, He L, Lu Y, Duo L (2017) The impact of modified nano-carbon black on the earthworm Eisenia fetida under turfgrass growing conditions: Assessment of survival, biomass, and antioxidant enzymatic activities. J Hazard Mater 338:218–223. (PMID: 10.1016/j.jhazmat.2017.05.035)
Zhao Z, Sha Z, Liu Y, Wu S, Zhang H, Li C, Zhao Q, Cao L (2016) Modeling the impacts of alternative fertilization methods on nitrogen loading in rice production in Shanghai. Sci Total Environ 566–567:1595–1603. (PMID: 10.1016/j.scitotenv.2016.06.055)
Zhao Z, Chu C, Zhou D, Sha Z, Wu S (2019) Soil nutrient status and the relation with planting area, planting age and grape varieties in urban vineyards in Shanghai. Heliyon 5:e02362.
Grant Information:
033919457 shanghai science and technology development foundation
Contributed Indexing:
Keywords: Biomarkers; Earthworm (Eisenia fetida); Growth inhibition; Polyaniline nanorods; Soil enzymes
Substance Nomenclature:
0 (Aniline Compounds)
0 (Antioxidants)
0 (Biomarkers)
0 (Soil)
0 (Soil Pollutants)
0 (polyaniline)
4Y8F71G49Q (Malondialdehyde)
EC 1.11.1.6 (Catalase)
EC 1.15.1.1 (Superoxide Dismutase)
Entry Date(s):
Date Created: 20220120 Date Completed: 20220510 Latest Revision: 20220510
Update Code:
20240105
DOI:
10.1007/s11356-021-18260-1
PMID:
35048350
Czasopismo naukowe
Polyaniline nanorods (PANRs) are typical one-dimensional nanomaterials (1D NMs), which are widely used in medicine, batteries and water treatment, etc. Applications of PANRs will eventually enter the soil environment, but their ecotoxicity has been barely reported. Therefore, we measured earthworm biomass, earthworm biomarkers and soil enzymes to investigate the ecotoxicity of PANRs. The result of positive and increasing growth inhibition rates (GIR) showed that PANRs inhibited earthworm growth. As for earthworm biomarkers, PANRs caused a decrease in protein content, indicating that PANRs stress would increase earthworm energy consumption. Except for the 7th day, the activities of SOD, CAT and POD consistently increased, suggesting that PANRs activated the earthworm antioxidant system. The continually augment of MDA content indicated that PANRs stress would cause earthworm lipid damage. Na + -K + -ATPase increased with an excellent dose-time relationship. Differently, cellulase and AChE activities promoted at low concentrations and inhibited at high concentrations. The positive and dose-dependent IBRv2 indicated that the higher the concentrations of PANRs, the greater the ecotoxicity to earthworms. PANRs inhibited the soil enzyme activities such as sucrase, neutral phosphatase, protease and urease, while induced catalase activity in a dose-dependent manner. Earthworm addition reduced catalase activity by 10.74-29.99%, but improved other soil enzymes activities, demonstrating that earthworms played a positive role in regulating soil enzyme activity. GMean and T-SQI consistently increased due to earthworm activity, meaning a higher soil microbial functional diversity. Generally, this study provided data support for future PANRs toxicity studies, but their toxicity mechanisms still need to be further studied.
(© 2022. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.)

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies