Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Role of ACC deaminase producing bacteria for abiotic stress management and sustainable agriculture production.

Tytuł:
Role of ACC deaminase producing bacteria for abiotic stress management and sustainable agriculture production.
Autorzy:
Chandwani S; C. G. Bhakta Institute of Biotechnology, Uka Tarsadia University, Maliba Campus, Bardoli- 394 350, Surat, Gujarat, India.
Amaresan N; C. G. Bhakta Institute of Biotechnology, Uka Tarsadia University, Maliba Campus, Bardoli- 394 350, Surat, Gujarat, India. .
Źródło:
Environmental science and pollution research international [Environ Sci Pollut Res Int] 2022 Apr; Vol. 29 (16), pp. 22843-22859. Date of Electronic Publication: 2022 Jan 20.
Typ publikacji:
Journal Article; Review
Język:
English
Imprint Name(s):
Publication: <2013->: Berlin : Springer
Original Publication: Landsberg, Germany : Ecomed
MeSH Terms:
Bacteria*
Carbon-Carbon Lyases*
Agriculture ; Stress, Physiological
References:
Abd-Allah EF, Alqarawi AA, Hashem A, Radhakrishnan R, Al-Huqail AA, Al-Otibi FON, Egamberdieva D (2018) Endophytic bacterium Bacillus subtilis (BERA 71) improves salt tolerance in chickpea plants by regulating the plant defense mechanisms. J Plant Interact 13:37–44. (PMID: 10.1080/17429145.2017.1414321)
Abeles FB, Morgan PW, Saltveit ME Jr (2012) Ethylene in plant biology, 2nd edn. Academic Press Inc, San Diego.
Acuña JJ, Campos M, de la Luz MM, Jaisi DP, Jorquera MA (2019) ACCD-producing rhizobacteria from an Andean Altiplano native plant (Parastrephia quadrangularis) and their potential to alleviate salt stress in wheat seedlings. Appl Soil Ecol 136:184–190. (PMID: 10.1016/j.apsoil.2019.01.005)
Adediran GA, Ngwenya BT, Mosselmans JFW, Heal KV (2016) Bacteria–zinc co-localization implicates enhanced synthesis of cysteine-rich peptides in zinc detoxification when Brassica juncea is inoculated with Rhizobium leguminosarum. New Phytol 209:280–293. (PMID: 10.1111/nph.13588)
Akhgar AR, Arzanlou M, Bakker PAHM, Hamidpour M (2014) Characterization of 1-aminocyclopropane-1-carboxylate (ACC) deaminase-containing Pseudomonas spp. in the rhizosphere of salt-stressed canola. Pedosphere 24:461–468. (PMID: 10.1016/S1002-0160(14)60032-1)
Ali SZ, Sandhya V, Grover M, Kishore N, Rao LV, Venkateswarlu B (2009) Pseudomonas sp. strain AKM-P6 enhances tolerance of sorghum seedlings to elevated temperatures. Biol Fertil Soils 46:45–55. (PMID: 10.1007/s00374-009-0404-9)
Ali S, Charles TC, Glick BR (2012) Delay of flower senescence by bacterial endophytes expressing 1-aminocyclopropane-1-carboxylate deaminase. J Appl Microbiol 113:1139–1144. (PMID: 10.1111/j.1365-2672.2012.05409.x)
Ali S, Charles TC, Glick BR (2014) Amelioration of high salinity stress damage by plant growth-promoting bacterial endophytes that contain ACC deaminase. Plant Physiol Biochem 80:160–167. (PMID: 10.1016/j.plaphy.2014.04.003)
Arshad M, Saleem M, Hussain S (2007) Perspectives of bacterial ACC deaminase in phytoremediation. Trends Biotechnol 25:356–362. (PMID: 10.1016/j.tibtech.2007.05.005)
Babalola OO, Osir EO, Sanni AI, Odhiambo GD, Bulimo WD (2003) Amplification of 1-amino-cyclopropane-1-carboxylic (ACC) deaminase from plant growth promoting rhizobacteria in Striga-infested soil. Afr J Biotechnol 2:157–160. (PMID: 10.5897/AJB2003.000-1032)
Baisak R, Rana D, Acharya PB, Kar M (1994) Alterations in the activities of active oxygen scavenging enzymes of wheat leaves subjected to water stress. Plant Cell Physiol 35:489–495.
Barka EA, Nowak J, Clément C (2006) Enhancement of chilling resistance of inoculated grapevine plantlets with a plant growth-promoting rhizobacterium, Burkholderia phytofirmans strain PsJN. Appl Environ Microbiol 72:7246–7252. (PMID: 10.1128/AEM.01047-06)
Barnawal D, Bharti N, Maji D, Chanotiya CS, Kalra A (2012) 1-Aminocyclopropane-1-carboxylic acid (ACC) deaminase-containing rhizobacteria protect Ocimum sanctum plants during waterlogging stress via reduced ethylene generation. Plant Physiol Biochem 58:227–235. (PMID: 10.1016/j.plaphy.2012.07.008)
Barnawal D, Bharti N, Maji D, Chanotiya CS, Kalra A (2014) ACC deaminase-containing Arthrobacter protophormiae induces NaCl stress tolerance through reduced ACC oxidase activity and ethylene production resulting in improved nodulation and mycorrhisation in Pisum sativum. J Plant Physiol 171:884–894. (PMID: 10.1016/j.jplph.2014.03.007)
Belimov AA, Safronova VI, Sergeyeva TA, Egorova TN, Matveyeva VA, Tsyganov VE, Borisov AY, Tikhonovich IA, Kluge C, Preisfeld A, Dietz KJ, Stepanok VV (2001) Characterisation of plant growth promoting rhizobacteria isolated from polluted soils and containing 1-aminocyclopropane-1-carboxylate deaminase. Can J Microbiol 47:642–652. (PMID: 10.1139/w01-062)
Belimov AA, Hontzeas N, Safronova VI, Demchinskaya SV, Piluzza G, Bullitta S, Glick BR (2005) Cadmium-tolerant plant growth-promoting bacteria associated with the roots of Indian mustard (Brassica juncea L. Czern.). Soil Biol Biochem 37:241–250. (PMID: 10.1016/j.soilbio.2004.07.033)
Belimov AA, Dodd IC, Safronova VI, Shaposhnikov AI, Azarova TS, Makarova NM, Davies WJ, Tikhonovich IA (2015) Rhizobacteria that produce auxins and contain 1-amino-cyclopropane-1-carboxylic acid deaminase decrease amino acid concentrations in the rhizosphere and improve growth and yield of well-watered and water-limited potato (Solanum tuberosum). Ann Appl Biol 167:11–25. (PMID: 10.1111/aab.12203)
Bharti N, Barnawal D (2019) Amelioration of salinity stress by PGPR: ACC deaminase and ROS scavenging enzymes activity. In PGPR amelioration in sustainable agriculture (pp. 85–106). Woodhead Publishing.
Blum A (2011) Drought resistance–is it really a complex trait? Funct Plant Biol 38:753–757. (PMID: 10.1071/FP11101)
Boyer JS (1982) Plant productivity and environment. Science 218:443–448. (PMID: 10.1126/science.218.4571.443)
Bray EA, Bailey-Serres J, Weretilnyk E (2000) Responses to abiotic stress. Biochemistry and molecular biology of plants. In: Gruissem W, Jones R (Eds). American Society of Plant Physiologists, Rockville, 1158–1203.
Brígido C, Nascimento FX, Duan J, Glick BR, Oliveira S (2013) Expression of an exogenous 1-aminocyclopropane-1-carboxylate deaminase gene in Mesorhizobium spp. reduces the negative effects of salt stress in chickpea. FEMS Microbiol Lett 349:46–53.
Burd GI, Dixon DG, Glick BR (1998) A plant growth-promoting bacterium that decreases nickel toxicity in seedlings. Appl Environ Microbiol 64:3663–3668. (PMID: 10.1128/AEM.64.10.3663-3668.1998)
Burd GI, Dixon DG, Glick BR (2000) Plant growth-promoting bacteria that decrease heavy metal toxicity in plants. Can J Microbiol 46:237–245. (PMID: 10.1139/w99-143)
Chakraborty U, Chakraborty BN, Chakraborty AP, Dey PL (2013) Water stress amelioration and plant growth promotion in wheat plants by osmotic stress tolerant bacteria. World J Microbiol Biotechnol 29:789–803. (PMID: 10.1007/s11274-012-1234-8)
Chandra D, Srivastava R, Sharma AK (2018) Influence of IAA and ACC deaminase producing fluorescent pseudomonads in alleviating drought stress in wheat (Triticum aestivum). Agricul Res 7:290–299. (PMID: 10.1007/s40003-018-0305-y)
Chandra D, Srivastava R, Gupta VV, Franco CM, Sharma AK (2019) Evaluation of ACC-deaminase-producing rhizobacteria to alleviate water-stress impacts in wheat (Triticum aestivum L.) plants. Can J Microbiol 65:387–403. (PMID: 10.1139/cjm-2018-0636)
Chandran H, Meena M, Swapnil P (2021) Plant growth-promoting rhizobacteria as a green alternative for sustainable agriculture. Sustainability 13:10986. (PMID: 10.3390/su131910986)
Chimner RA, Cooper DJ, Wurster FC, Rochefort L (2017) An overview of peatland restoration in North America: where are we after 25 years? Restor Ecol 25:283–292. (PMID: 10.1111/rec.12434)
Chookietwattana K, Maneewan K (2012) Selection of efficient salt-tolerant bacteria containing ACC deaminase for promotion of tomato growth under salinity stress. Soil Environ 31:30–36.
Conesa MR, De La Rosa JM, Domingo R, Banon S, Perez-Pastor A (2016) Changes induced by water stress on water relations, stomatal behaviour and morphology of table grapes (cv. Crimson seedless) grown in pots. Sci Hortic 202:9–16. (PMID: 10.1016/j.scienta.2016.02.002)
Covarrubias SA, Cabriales JJP (2017) Contaminación ambiental por metales pesados en México: Problemática y estrategias de fitorremediación. Rev Int De Contam Ambient 33:7–21. (PMID: 10.20937/RICA.2017.33.esp01.01)
Danish S, Kiran S, Fahad S, Ahmad N, Ali MA, Tahir FA, Nasim W (2019) Alleviation of chromium toxicity in maize by Fe fortification and chromium tolerant ACC deaminase producing plant growth promoting rhizobacteria. Ecotoxicol Environ Saf 185:109706. (PMID: 10.1016/j.ecoenv.2019.109706)
Danish S, Zafar-ul-Hye M, Mohsin F, Hussain M (2020) ACC-deaminase producing plant growth-promoting rhizobacteria and biochar mitigate adverse effects of drought stress on maize growth. Plos One 15:e0230615. (PMID: 10.1371/journal.pone.0230615)
del CarmenOrozco-Mosqueda M, Glick BR, Santoyo G (2020) ACC deaminase in plant growth-promoting bacteria (PGPB): an efficient mechanism to counter salt stress in crops. Microbiol Res. 235:126439. (PMID: 10.1016/j.micres.2020.126439)
Di Gregorio S, Barbafieri M, Lampis S, Sanangelantoni AM, Tassi E, Vallini G (2006) Combined application of Triton X-100 and Sinorhizobium sp. Pb002 inoculum for the improvement of lead phytoextraction by Brassica juncea in EDTA amended soil. Chemosphere 63:293–299. (PMID: 10.1016/j.chemosphere.2005.07.020)
Donate-Correa J, León-Barrios M, Pérez-Galdona R (2005) Screening for plant growth-promoting rhizobacteria in Chamaecytisus proliferus (tagasaste), a forage tree-shrub legume endemic to the Canary Islands. Plant Soil 266:261–272. (PMID: 10.1007/s11104-005-0754-5)
Dubois M, van den Broeck L, Inzé D (2018) The pivotal role of ethylene in plant growth. Trends Plant Sci 23:311–323. (PMID: 10.1016/j.tplants.2018.01.003)
Emamverdian A, Ding Y, Mokhberdoran F, Xie Y (2015) Heavy metal stress and some mechanisms of plant defense response. Sci World J. 2015, Article ID 756120.
Fahad S, Hussain S, Matloob A, Khan FA, Khaliq A, Saud S, Hassan S, Shan D, Khan F, Ullah N, Faiq M (2015a) Phytohormones and plant responses to salinity stress: a review. Plant Growth Regul 75(2):391–404. (PMID: 10.1007/s10725-014-0013-y)
Fahad S, Hussain S, Saud S, Hassan S, Ihsan Z, Shah AN, Wu C, Yousaf M, Nasim W, Alharby H, Alghabari F (2016) Exogenously applied plant growth regulators enhance the morpho-physiological growth and yield of rice under high temperature. Front Plant Sci 7:1250. (PMID: 10.3389/fpls.2016.01250)
Fahad S, Ihsan MZ, Khaliq A, Daur I, Saud S, Alzamanan S, Nasim W, Abdullah M, Khan IA, Wu C, Wang D (2018) Consequences of high temperature under changing climate optima for rice pollen characteristics-concepts and perspectives. Archives of Agronomy and Soil Science 64(11):1473–1488. (PMID: 10.1080/03650340.2018.1443213)
Fahad, S., Nie, L., Chen, Y., Wu, C., Xiong, D., Saud, S., Hongyan, L., Cui, K. and Huang, J., 2015. Crop plant hormones and environmental stress. Sustainable Agriculture Reviews, pp.371–400.
Fahad, S., Sönmez, O., Saud, S., Wang, D., Wu, C., Adnan, M. and Arif, M. eds., 2021a. Engineering tolerance in crop plants against abiotic stress. CRC Press.
Fahad, S., Sonmez, O., Saud, S., Wang, D., Wu, C., Adnan, M. and Turan, V. eds., 2021b. Sustainable Soil and Land Management and Climate Change. CRC Press.
Fahad, S., Sonmez, O., Saud, S., Wang, D., Wu, C., Adnan, M. and Turan, V. eds., 2021c. Plant Growth Regulators for Climate-Smart Agriculture. CRC Press.
Farwell AJ, Vesely S, Nero V, Rodriguez H, McCormack K, Shah S, Glick BR (2007) Tolerance of transgenic canola plants (Brassica napus) amended with plant growth-promoting bacteria to flooding stress at a metal-contaminated field site. Environ Pollut 147:540–545. (PMID: 10.1016/j.envpol.2006.10.014)
Ferreira NC, Mazzuchelli RDCL, Pacheco AC, Araujo FFD, Antunes JEL, Araujo ASFD (2018) Bacillus subtilis improves maize tolerance to salinity. Ciênc Rural 48, e20170910.
Forni C, Duca D, Glick BR (2017) Mechanisms of plant response to salt and drought stress and their alteration by rhizobacteria. Plant Soil 410:335–356. (PMID: 10.1007/s11104-016-3007-x)
Fougnies L, Renciot S, Muller F, Plenchette C, Prin Y, De Faria SM, Bâ AM (2007) Arbuscular mycorrhizal colonisation and nodulation improve flooding tolerance in Pterocarpus officinalis Jacq seedlings. Mycorrhiza 17(3):159–166. (PMID: 10.1007/s00572-006-0085-2)
Gamalero E, Glick BR (2012) Ethylene and abiotic stress tolerance in plants. In: Ahmad P, Prasad MNV (eds) Environmental adaptations and stress tolerance of plants in the era of climate change. Springer, New York, pp 395–412. (PMID: 10.1007/978-1-4614-0815-4_18)
Gamalero E, Lingua G, Berta G, Glick BR (2009) Beneficial role of plant growth promoting bacteria and arbuscular mycorrhizal fungi on plant responses to heavy metal stress. Can J Microbiol 55:501–514. (PMID: 10.1139/W09-010)
Gerszberg A, Hnatuszko-Konka K (2017) Tomato tolerance to abiotic stress: a review of most often engineered target sequences. Plant Growth Regul 83:175–198. (PMID: 10.1007/s10725-017-0251-x)
Gill SS, Gill R, Trivedi DK, Anjum NA, Sharma KK, Ansari MW, Ansari AA, Johri AK, Prasad R, Pereira E, Varma A, Tuteja N (2016) Piriformospora indica: potential and significance in plant stress tolerance. Front Microbiol 7:332. (PMID: 10.3389/fmicb.2016.00332)
Glick BR (2003) Phytoremediation: synergistic use of plants and bacteria to clean up the environment. Biotechnol Adv 21:383–393. (PMID: 10.1016/S0734-9750(03)00055-7)
Glick BR (2012) Plant growth-promoting bacteria: mechanisms and applications. Scientifica 2012:963401. (PMID: 10.6064/2012/963401)
Glick BR (2014) Bacteria with ACC deaminase can promote plant growth and help to feed the world. Microbiol Res 169:30–39. (PMID: 10.1016/j.micres.2013.09.009)
Glick BR, Penrose DM, Li J (1998) A model for the lowering of plant ethylene concentrations by plant growth-promoting bacteria. J Theor Biol 190:63–68. (PMID: 10.1006/jtbi.1997.0532)
Glick BR, Cheng Z, Czarny J, Duan J (2007a) Promotion of plant growth by ACC deaminase-producing soil bacteria. In: Bakker PAHM, Raaijmakers JM, Bloemberg G, Höfte M, Lemanceau P, Cooke BM (eds) New perspectives and approaches in plant growth-promoting rhizobacteria research. Springer, Dordrecht, pp 329–339. (PMID: 10.1007/978-1-4020-6776-1_8)
Glick BR, Todorovic B, Czarny J, Cheng Z, Duan J, McConkey B (2007b) Promotion of plant growth by bacterial ACC deaminase. Crit Rev Plant Sci 26:227–242. (PMID: 10.1080/07352680701572966)
Gontia-Mishra I, Sapre S, Kachare S, Tiwari S (2017) Molecular diversity of 1-aminocyclopropane-1-carboxylate (ACC) deaminase producing PGPR from wheat (Triticum aestivum L.) rhizosphere. Plant Soil 414:213–227. (PMID: 10.1007/s11104-016-3119-3)
Gowtham HG, Singh B, Murali M, Shilpa N, Prasad M, Aiyaz M, Niranjana SR (2020) Induction of drought tolerance in tomato upon the application of ACC deaminase producing plant growth promoting rhizobacterium Bacillus subtilis Rhizo SF 48. Microbiol Res 234:126422. (PMID: 10.1016/j.micres.2020.126422)
Grichko VP, Glick BR (2001) Amelioration of flooding stress by ACC deaminase-containing plant growth-promoting bacteria. Plant Physiol Biochem 39:11–17. (PMID: 10.1016/S0981-9428(00)01212-2)
Grobelak A, Kokot P, Świątek J, Jaskulak M, Rorat A (2018) Bacterial ACC deaminase activity in promoting plant growth on areas contaminated with heavy metals. J Ecol Eng 19:150–157. (PMID: 10.12911/22998993/89818)
Grover M, Ali SZ, Sandhya V, Rasul A, Venkateswarlu B (2011) Role of microorganisms in adaptation of agriculture crops to abiotic stresses. World J Microbiol Biotechnol 27:1231–1240. (PMID: 10.1007/s11274-010-0572-7)
Gururani MA, Upadhyaya CP, Baskar V, Venkatesh J, Nookaraju A, Park SW (2013) Plant growth-promoting rhizobacteria enhance abiotic stress tolerance in Solanum tuberosum through inducing changes in the expression of ROS-scavenging enzymes and improved photosynthetic performance. J Plant Grow Regul 32:245–258. (PMID: 10.1007/s00344-012-9292-6)
Hall JÁ (2002) Cellular mechanisms for heavy metal detoxification and tolerance. J Exper Bot 53:1–11. (PMID: 10.1093/jexbot/53.366.1)
Han Y, Wang R, Yang Z, Zhan Y, Ma Y, Ping S, Yan Y (2015) 1-aminocyclopropane-1-carboxylate deaminase from Pseudomonas stutzeri A1501 facilitates the growth of rice in the presence of salt or heavy metals. J Microbiol Biotechnol 25:1119–1128. (PMID: 10.4014/jmb.1412.12053)
Hedhly A, Hormaza JI, Herrero M (2009) Global warming and sexual plant reproduction. Trends Plant Sci 14:30–36. (PMID: 10.1016/j.tplants.2008.11.001)
Hernández-León R, Rojas-Solís D, Contreras-Pérez M, del Carmen O-M, Macías-Rodríguez LI, Reyes-de la Cruz H, Santoyo G (2015) Characterization of the antifungal and plant growth-promoting effects of diffusible and volatile organic compounds produced by Pseudomonas fluorescens strains. Biol Control 81:83–92. (PMID: 10.1016/j.biocontrol.2014.11.011)
Heydarian Z, Gruber M, Glick BR, Hegedus DD (2018) Gene expression patterns in roots of Camelina sativa with enhanced salinity tolerance arising from inoculation of soil with plant growth promoting bacteria producing 1-aminocyclopropane-1-carboxylate deaminase or expression the corresponding acds gene. Front Microbiol 9:1297. (PMID: 10.3389/fmicb.2018.01297)
Honma M, Shimomura T (1978) Metabolism of 1-aminocyclopropane-1-carboxylic acid. Agricul Biol Chem 42:1825–1831.
Hontzeas N, Hontzeas CE, Glick BR (2006) Reaction mechanisms of the bacterial enzyme 1-aminocyclopropane-1-carboxylate deaminase. Biotechnol Adv 24:420–426. (PMID: 10.1016/j.biotechadv.2006.01.006)
Horie T, Karahara I, Katsuhara M (2012) Salinity tolerance mechanisms in glycophytes: an overview with the central focus on rice plants. Rice 5:1–18. (PMID: 10.1186/1939-8433-5-11)
Hossain MS, Dietz KJ (2016) Tuning of redox regulatory mechanisms, reactive oxygen species and redox homeostasis under salinity stress. Front Plant Sci 7:548. (PMID: 10.3389/fpls.2016.00548)
Hossain MA, Piyatida P, da Silva JAT, Fujita M (2012) Molecular mechanism of heavy metal toxicity and tolerance in plants: central role of glutathione in detoxification of reactive oxygen species and methylglyoxal and in heavy metal chelation. J Bot. 2012, Article ID 872875.
Huang XF, Zhou D, Lapsansky ER, Reardon KF, Guo J, Andales MJ, Manter DK (2017) Mitsuaria sp. and Burkholderia sp. from Arabidopsis rhizosphere enhance drought tolerance in Arabidopsis thaliana and maize (Zea mays L.). Plant Soil 419:523–539. (PMID: 10.1007/s11104-017-3360-4)
Hye MZ, Shahjahan A, Danish S (2018) Mitigation of cadmium toxicity induced stress in wheat by acc-deaminase containing pgpr isolated from cadmium polluted wheat rhizosphere. Pak J Bot 50:1727–1734.
Ishitani M, Rao I, Wenzl P, Beebe S, Tohme J (2004) Integration of genomics approach with traditional breeding towards improving abiotic stress adaptation: drought and aluminum toxicity as case studies. Field Crops Res 90:35–45. (PMID: 10.1016/j.fcr.2004.07.004)
Islam F, Yasmeen T, Ali Q, Ali S, Arif MS, Hussain S, Rizvi H (2014) Influence of Pseudomonas aeruginosa as PGPR on oxidative stress tolerance in wheat under Zn stress. Ecotoxicol Environ Saf 104:285–293. (PMID: 10.1016/j.ecoenv.2014.03.008)
Jiang CY, Sheng XF, Qian M, Wang QY (2008) Isolation and characterisation of a heavy metal-resistant Burkholderia sp. from heavy metal-contaminated paddy field soil and its potential in promoting plant growth and heavy metal accumulation in metal-polluted soil. Chemosphere 72:157–164. (PMID: 10.1016/j.chemosphere.2008.02.006)
John R, Ahmad P, Gadgil K, Sharma S (2009) Heavy metal toxicity: effect on plant growth, biochemical parameters and metal accumulation by Brassica juncea L. Int J Plant Prod 3:65–76.
Kadioglu GB, Koseoglu MS, Ozdal M, Sezen A, Ozdal OG, Algur OF (2018) Isolation of cold tolerant and ACC deaminase producing plant growth promoting rhizobacteria from high altitudes. Rom Biotechnol Lett 23:13479.
Kang BG, Kim WT, Yun HS, Chang SC (2010) Use of plant growth-promoting rhizobacteria to control stress responses of plant roots. Plant Biotechnol Rep 4:179–183. (PMID: 10.1007/s11816-010-0136-1)
Kang SM, Shahzad R, Bilal S, Khan AL, Park YG, Lee KE, Lee IJ (2019) Indole-3-acetic-acid and ACC deaminase producing Leclercia adecarboxylata MO1 improves Solanum lycopersicum L. growth and salinity stress tolerance by endogenous secondary metabolites regulation. BMC Microbiol 19:1–14. (PMID: 10.1186/s12866-019-1450-6)
Kaur J, Pandove G, Gangwar M, Brar SK, Sekhon KS (2018) Mitigating the impact of climate change on wheat by use of liquid microbial inoculants under different planting dates. Res Crops 19:365–372.
Khan NA, Mir MR, Nazar R, Singh S (2008) The application of ethephon (an ethylene releaser) increases growth, photosynthesis and nitrogen accumulation in mustard (Brassica juncea L.) under high nitrogen levels. Plant Biol 10:534–538. (PMID: 10.1111/j.1438-8677.2008.00054.x)
Khan MA, Asaf S, Khan AL, Ullah I, Ali S, Kang SM, Lee IJ (2019) Alleviation of salt stress response in soybean plants with the endophytic bacterial isolate Curtobacterium sp. SAK1. Ann Microbiol 69:797–808. (PMID: 10.1007/s13213-019-01470-x)
Klee HJ, Hayford MB, Kretzmer KA, Barry GF, Kishore GM (1991) Control of ethylene synthesis by expression of a bacterial enzyme in transgenic tomato plants. Plant Cell 3:1187–1193.
Kong Z, Mohamad OA, Deng Z, Liu X, Glick BR, Wei G (2015) Rhizobial symbiosis effect on the growth, metal uptake, and antioxidant responses of Medicago lupulina under copper stress. Environ Sci Pollut Res 22:12479–12489. (PMID: 10.1007/s11356-015-4530-7)
Kumar KV, Singh N, Behl HM, Srivastava S (2008) Influence of plant growth promoting bacteria and its mutant on heavy metal toxicity in Brassica juncea grown in fly ash amended soil. Chemosphere 72:678–683. (PMID: 10.1016/j.chemosphere.2008.03.025)
Kumari S, Vaishnav A, Jain S, Varma A, Choudhary DK (2016) Induced drought tolerance through wild and mutant bacterial strain Pseudomonas simiae in mung bean (Vigna radiata L.). World J Microbiol Biotechnol. 32, 4.
Li J, McConkey BJ, Cheng Z, Guo S, Glick BR (2013) Identification of plant growth-promoting bacteria-responsive proteins in cucumber roots under hypoxic stress using a proteomic approach. J Proteom 84:119–131. (PMID: 10.1016/j.jprot.2013.03.011)
Mahmood A, Amaya R, Turgay OC, Yaprak AE, Taniguchi T, Kataoka R (2019) High salt tolerant plant growth promoting rhizobacteria from the common ice-plant Mesembryanthemum crystallinum L. Rhizosphere 9:10–17. (PMID: 10.1016/j.rhisph.2018.10.004)
Mattioli R, Marchese D, D’Angeli S, Altamura MM, Costantino P, Trovato M (2008) Modulation of intracellular proline levels affects flowering time and inflorescence architecture in Arabidopsis. Plant Mol Biol 66:277–288. (PMID: 10.1007/s11103-007-9269-1)
Maxton A, Singh P, Masih SA (2018) ACC deaminase-producing bacteria mediated drought and salt tolerance in Capsicum annuum. J Plant Nutr 41:574–583. (PMID: 10.1080/01904167.2017.1392574)
Mayak S, Tirosh T, Glick BR (1999) Effect of wild-type and mutant plant growth-promoting rhizobacteria on the rooting of mung bean cuttings. J Plant Grow Regul 18:49–53. (PMID: 10.1007/PL00007047)
Mir RR, Zaman-Allah M, Sreenivasulu N, Trethowan R, Varshney RK (2012) Integrated genomics, physiology and breeding approaches for improving drought tolerance in crops. Theor Appl Genet 125:625–645. (PMID: 10.1007/s00122-012-1904-9)
Misra S, Dixit VK, Khan MH, Mishra SK, Dviwedi G, Yadav S, Lehri A, Chauhan PS (2017) Exploitation of agro-climatic environment for selection of 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase producing salt tolerant indigenous plant growth promoting rhizobacteria. Microbiol Res 205:25–34. (PMID: 10.1016/j.micres.2017.08.007)
Mittler R (2002) Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci 7:405–410. (PMID: 10.1016/S1360-1385(02)02312-9)
Morison JIL, Baker NR, Mullineaux PM, Davies WJ (2008) Improving water use in crop production. Philos Trans R Soc Lond B Biol Sci 363:639–658. (PMID: 10.1098/rstb.2007.2175)
Mukhtar T, Smith D, Sultan T, Seleiman MF, Alsadon AA, Ali S, Saad MA (2020) Mitigation of heat stress in Solanum lycopersicum L. by ACC-deaminase and exopolysaccharide producing Bacillus cereus: effects on biochemical profiling. Sustainability 12, 2159.
Müller R, Stummann BM (2003) Ethylene. In: Reberts AV, Serge Gudin TD (eds) Encyclopedia of rose science. Elsevier, Academic Press, pp 557–564. (PMID: 10.1016/B0-12-227620-5/00064-1)
Munir TM, Perkins M, Kaing E, Strack M (2015) Carbon dioxide flux and net primary production of a boreal treed bog: responses to warming and water-table-lowering simulations of climate change. Biogeosciences 12:1091–1111. (PMID: 10.5194/bg-12-1091-2015)
Murali M, Gowtham HG, Singh SB, Shilpa N, Aiyaz M, Niranjana SR, Amruthesh KN (2021) Bio-prospecting of ACC deaminase producing rhizobacteria towards sustainable agriculture: a special emphasis on abiotic stress in plants. Appl Soil Ecol 168:104142. (PMID: 10.1016/j.apsoil.2021.104142)
Nadeem SM, Zahir ZA, Naveed M, Arshad M (2009) Rhizobacteria containing ACC-deaminase confer salt tolerance in maize grown on salt-affected fields. Can J Microbiol 55:1302–1309. (PMID: 10.1139/W09-092)
Nadeem SM, Zahir ZA, Naveed M, Asghar HN, Arshad M (2010) Rhizobacteria capable of producing ACC-deaminase may mitigate salt stress in wheat. Soil Sci Soc Am J 74:533–542. (PMID: 10.2136/sssaj2008.0240)
Nascimento F, Brígido C, Alho L, Glick BR, Oliveira S (2012) Enhanced chickpea growth-promotion ability of a Mesorhizobium strain expressing an exogenous ACC deaminase gene. Plant Soil 353:221–230. (PMID: 10.1007/s11104-011-1025-2)
Nascimento FX, Brígido C, Glick BR, Rossi MJ (2016) The role of rhizobial ACC deaminase in the nodulation process of leguminous plants. Int J Agron. 2016, Article ID 1369472.
Nayani S, Mayak S, Glick BR (1998) Effect of plant growth-promoting rhizobacteria on senescence of flower petals. Indian J Exp Biol 36:836–839.
Nie L, Shah S, Rashid A, Burd GI, Dixon DG, Glick BR (2002) Phytoremediation of arsenate contaminated soil by transgenic canola and the plant growth-promoting bacterium Enterobacter cloacae CAL2. Plant Physiol Biochem 40:355–361. (PMID: 10.1016/S0981-9428(02)01375-X)
Orozco-Mosqueda M, Duan J, DiBernardo M, Zetter E, Campos-García J, Glick BR, Santoyo G (2019) The production of ACC deaminase and trehalose by the plant growth promoting bacterium Pseudomonas sp. UW4 synergistically protect tomato plants against salt stress. Front Microbiol. 10, 1392.
Pandey S, Gupta S (2019) ACC deaminase producing bacteria with multifarious plant growth promoting traits alleviates salinity stress in French bean (Phaseolus vulgaris) plants. Front Microbiol 10:1506. (PMID: 10.3389/fmicb.2019.01506)
Pandey S, Ghosh PK, Ghosh S, De TK, Maiti TK (2013) Role of heavy metal resistant Ochrobactrum sp. and Bacillus spp. strains in bioremediation of a rice cultivar and their PGPR like activities. J Microbiol 51:11–17. (PMID: 10.1007/s12275-013-2330-7)
Pierik R, Tholen D, Poorter H, Visser EJ, Voesenek LA (2006) The Janus face of ethylene: growth inhibition and stimulation. Trends Plant Sci 11:176–183. (PMID: 10.1016/j.tplants.2006.02.006)
Prasad PV, Djanaguiraman M (2014) Response of floret fertility and individual grain weight of wheat to high temperature stress: sensitive stages and thresholds for temperature and duration. Funct Plant Biol 41:1261–1269. (PMID: 10.1071/FP14061)
Reed MLE, Warner BG, Glick BR (2005) Plant growth–promoting bacteria facilitate the growth of the common reed Phragmites australis in the presence of copper or polycyclic aromatic hydrocarbons. Curr Microbiol 51:425–429. (PMID: 10.1007/s00284-005-4584-8)
Rellán-Álvarez R, Ortega-Villasante C, Álvarez-Fernández A, Del Campo FF, Hernández LE (2006) Stress responses of Zea mays to cadmium and mercury. Plant Soil 279:41–50. (PMID: 10.1007/s11104-005-3900-1)
Rengasamy P (2010) Soil processes affecting crop production in salt-affected soils. Funct Plant Biol 37:613–620. (PMID: 10.1071/FP09249)
Rodriguez H, Vessely S, Shah S, Glick BR (2008) Effect of a nickel-tolerant ACC deaminase-producing Pseudomonas strain on growth of nontransformed and transgenic canola plants. Curr Microbiol 57:170–174. (PMID: 10.1007/s00284-008-9181-1)
Safronova VI, Stepanok VV, Engqvist GL, Alekseyev YV, Belimov AA (2006) Root-associated bacteria containing 1-aminocyclopropane-1-carboxylate deaminase improve growth and nutrient uptake by pea genotypes cultivated in cadmium supplemented soil. Biol Fert Soils 42:267–272. (PMID: 10.1007/s00374-005-0024-y)
Saikia J, Sarma RK, Dhandia R, Yadav A, Bharali R, Gupta VK, Saikia R (2018) Alleviation of drought stress in pulse crops with ACC deaminase producing rhizobacteria isolated from acidic soil of Northeast India. Sci Rep 8:1–16.
Sairam RK, Tyagi A, Chinnusamy V (2016) Salinity tolerance: cellular mechanisms and gene regulation. In: Huang B (ed) Plant-environment interactions. CRC Press, pp 137–191.
Saleem M, Arshad M, Hussain S, Bhatti AS (2007) Perspective of plant growth promoting rhizobacteria (PGPR) containing ACC deaminase in stress agriculture. J Ind Microbiol Biotechnol 34:635–648. (PMID: 10.1007/s10295-007-0240-6)
Samson M, Słowińska S, Słowiński M, Lamentowicz M, Barabach J, Harenda K, Zielińska M, Robroek BJM, Jassey VEJ, Buttler A, Chojnicki BH (2018) The impact of experimental temperature and water level manipulation on carbon dioxide release in a poor fen in Northern Poland. Wetlands 38:551–563. (PMID: 10.1007/s13157-018-0999-4)
Sandhya V, Ali S, Grover M, Kishore N, Venkateswarlu B (2009) Pseudomonas sp. strain P45 protects sunflowers seedlings from drought stress through improved soil structure. J Oilseeds Res 26:600–601.
Santoyo G, Strathern JN (2008) Non-homologous end joining is important for repair of Cr (VI)-induced DNA damage in Saccharomyces cerevisiae. Microbiol Res 163:113–119. (PMID: 10.1016/j.micres.2007.09.001)
Santoyo G, Pacheco CH, Salmerón JH, León RH (2017) The role of abiotic factors modulating the plant-microbe-soil interactions: toward sustainable agriculture. A Review Span J Agricul Res 15:13.
Sapre S, Gontia-Mishra I, Tiwari S (2019) ACC deaminase-producing bacteria: a key player in alleviating abiotic stresses in plants. Plant growth promoting Rhizobacteria for agricultural sustainability. Springer, Singapore, pp 267–291. (PMID: 10.1007/978-981-13-7553-8_14)
Saraf M, Jha CK, Patel D (2010) The role of ACC deaminase producing PGPR in sustainable agriculture. In: Maheswari DK (ed) Plant growth and health promoting bacteria. Springer, Berlin, Heidelberg, pp 365–385. (PMID: 10.1007/978-3-642-13612-2_16)
Saravanakumar D, Samiyappan R (2007) ACC deaminase from Pseudomonas fluorescens mediated saline resistance in groundnut (Arachis hypogea) plants. J Appl Microbiol 102:1283–1292. (PMID: 10.1111/j.1365-2672.2006.03179.x)
Sarma RK, Saikia R (2014) Alleviation of drought stress in mung bean by strain Pseudomonas aeruginosa GGRJ21. Plant Soil 377:111–126. (PMID: 10.1007/s11104-013-1981-9)
Sharma P, Khanna V, Kumari P (2013) Efficacy of aminocyclopropane-1-carboxylic acid (ACC)-deaminase-producing rhizobacteria in ameliorating water stress in chickpea under axenic conditions. Afr J Microbiol Res 7:5749–5757. (PMID: 10.5897/AJMR2013.5918)
Sharma P, Jha AB, Dubey RS, Pessarakli M (2012) Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions. J Bot. 2012. Article ID 217037.
Sheng XF, Xia JJ, Jiang CY, He LY, Qian M (2008) Characterisation of heavy metal-resistant endophytic bacteria from rape (Brassica napus) roots and their potential in promoting the growth and lead accumulation of rape. Environ Pollut 156:1164–1170. (PMID: 10.1016/j.envpol.2008.04.007)
Siddique A, Kandpal G, Kumar P (2018) Proline accumulation and its defensive role under diverse stress condition in plants: an overview. J Pure Appl Microbiol 12:1655–1659. (PMID: 10.22207/JPAM.12.3.73)
Singh SB, Gowtham HG, Murali M, Hariprasad P, Lakshmeesha TR, Murthy KN, Niranjana SR (2019) Plant growth promoting ability of ACC deaminase producing rhizobacteria native to Sunflower (Helianthus annuus L.). Biocatal Agricul Biotechnol. 18 101089.
Singh RP, Jha PN (2016) Alleviation of salinity-induced damage on wheat plant by an ACC deaminase-producing halophilic bacterium Serratia sp. SL-12 isolated from a salt lake. Symbiosis 69:101–111. (PMID: 10.1007/s13199-016-0387-x)
Sita K, Sehgal A, Kumar J, Kumar S, Singh S, Siddique KH, Nayyar H (2017) Identification of high-temperature tolerant lentil (Lens culinaris Medik.) genotypes through leaf and pollen traits. Front Plant Sci. 8, 744.
Tahir M, Ahmad I, Shahid M, Shah GM, Farooq ABU, Akram M, Zakir A (2019) Regulation of antioxidant production, ion uptake and productivity in potato (Solanum tuberosum L.) plant inoculated with growth promoting salt tolerant Bacillus strains. Ecotoxicol Environ Saf 178:33–42. (PMID: 10.1016/j.ecoenv.2019.04.027)
Tilman D, Cassman KG, Matson PA, Naylor R, Polasky S (2002) Agricultural sustainability and intensive production practices. Nature 418:671–677. (PMID: 10.1038/nature01014)
Timmusk S, Abd El-Daim IA, Copolovici L, Tanilas T, Kännaste A, Behers L, Niinemets Ü (2014) Drought-tolerance of wheat improved by rhizosphere bacteria from harsh environments: enhanced biomass production and reduced emissions of stress volatiles. PloS One 9:e96086. (PMID: 10.1371/journal.pone.0096086)
Tiwari S, Lata C, Chauhan PS, Nautiyal CS (2016) Pseudomonas putida attunes morphophysiological, biochemical and molecular responses in Cicer arietinum L. during drought stress and recovery. Plant Physiol Biochem 99:108–117. (PMID: 10.1016/j.plaphy.2015.11.001)
Tiwari G, Duraivadivel P, Sharma S, Hariprasad P (2018) 1-Aminocyclopropane-1-carboxylic acid deaminase producing beneficial rhizobacteria ameliorate the biomass characters of Panicum maximum Jacq. by mitigating drought and salt stress. Sci Rep 8:1–12. (PMID: 10.1038/s41598-018-35565-3)
Tuma MBZDJ (2016) The efficiency of cadmium and zinc accumulation and influence on nutrient uptake and water stress in Brassica napus l. Comparat Euro Res 2016:116.
Vidoz ML, Loreti E, Mensuali A, Alpi A, Perata P (2010) Hormonal interplay during adventitious root formation in flooded tomato plants. Plant J 63:551–562. (PMID: 10.1111/j.1365-313X.2010.04262.x)
Woltering EJ, van Doorn WG (1988) Role of ethylene in senescence of petals-morphological and taxonomical relationships. J Exp Bot 39:1605–1616. (PMID: 10.1093/jxb/39.11.1605)
Wuana RA, Okieimen FE (2011) Heavy metals in contaminated soils: a review of sources, chemistry, risks and best available strategies for remediation. ISRN Ecol. 2011, Article ID 402647.
Yaish MW, Al-Harrasi I, Alansari AS, Al-Yahyai R, Glick BR (2016) The use of high throughput DNA sequence analysis to assess the endophytic microbiome of date palm roots grown under different levels of salt stress. Int Microbiol 19:143–155.
Yang Y, Guo Y (2018) Unraveling salt stress signaling in plants. J Integrat Plant Biol 60:796–804. (PMID: 10.1111/jipb.12689)
Yao M, Ose T, Sugimoto H, Horiuchi A, Nakagawa A, Wakatsuki S, Tanaka I (2000) Crystal structure of 1-aminocyclopropane-1-carboxylate deaminase from Hansenula saturnus. J Biol Chem 275:34557–34565. (PMID: 10.1074/jbc.M004681200)
Yildrim E, Donmez MF, Turan M (2008) Use of bioinoculants in ameliorative effects on radish plants under salinity stress. J Plant Nutr 31:2059–2074. (PMID: 10.1080/01904160802446150)
Zafar-ul-Hye M, Danish S, Abbas M, Ahmad M, Munir TM (2019) ACC deaminase producing PGPR Bacillus amyloliquefaciens and Agrobacterium fabrum along with biochar improve wheat productivity under drought stress. Agronomy 9:343. (PMID: 10.3390/agronomy9070343)
Zahir ZA, Ghani U, Naveed M, Nadeem SM, Asghar HN (2009) Comparative effectiveness of Pseudomonas and Serratia sp. containing ACC-deaminase for improving growth and yield of wheat (Triticum aestivum L.) under salt-stressed conditions. Arch Microbiol 191:415–424. (PMID: 10.1007/s00203-009-0466-y)
Zainab N, Din BU, Javed MT, Afridi MS, Mukhtar T, Kamran MA, Chaudhary HJ (2020) Deciphering metal toxicity responses of flax (Linum usitatissimum L.) with exopolysaccharide and ACC-deaminase producing bacteria in industrially contaminated soils. Plant Physiol Biochem 152:90–99. (PMID: 10.1016/j.plaphy.2020.04.039)
Zhang H, Murzello C, Sun Y, Kim MS, Xie X, Jeter RM, Paré PW (2010) Choline and osmotic-stress tolerance induced in Arabidopsis by the soil microbe Bacillus subtilis (GB03). Mol Plant-Microbe Interact 23:1097–1104. (PMID: 10.1094/MPMI-23-8-1097)
Zhang YF, He LY, Chen ZJ, Wang QY, Qian M, Sheng XF (2011) Characterization of ACC deaminase-producing endophytic bacteria isolated from copper-tolerant plants and their potential in promoting the growth and copper accumulation of Brassica napus. Chemosphere 83:57–62. (PMID: 10.1016/j.chemosphere.2011.01.041)
Zhang X, Rong X, Cai M, Meng Q (2019) Collaborative pptimisation of emissions and abatement costs for air pollutants and greenhouse gases from the perspective of energy structure: An empirical analysis in Tianjin. Sustainability 11:3872. (PMID: 10.3390/su11143872)
Zhao Z, Chen H, Li K, Du W, He S, Liu HW (2003) Reaction of 1-amino-2-methylenecyclopropane-1-carboxylate with 1-aminocyclopropane-1-carboxylate deaminase: analysis and mechanistic implications. Biochem 42:2089–2103. (PMID: 10.1021/bi020567n)
Zhou B, Yao W, Wang S, Wang X, Jiang T (2014) The metallothionein gene, TaMT3, from Tamarix androssowii confers Cd tolerance in tobacco. Int J Mol Sci 15:10398–10409. (PMID: 10.3390/ijms150610398)
Contributed Indexing:
Keywords: ACC deaminase; Abiotic stresses; Ammonia; Ethylene; Plant growth–promoting bacteria; Reactive oxygen species; α-Ketobutyrate
Substance Nomenclature:
EC 3.5.99.7 (1-aminocyclopropane-1-carboxylate deaminase)
EC 4.1.- (Carbon-Carbon Lyases)
Entry Date(s):
Date Created: 20220120 Date Completed: 20220406 Latest Revision: 20240402
Update Code:
20240402
DOI:
10.1007/s11356-022-18745-7
PMID:
35050477
Czasopismo naukowe
Plants are immobile and are exposed to various biotic and abiotic stresses, including heat, cold, drought, flooding, nutrient deficiency, heavy metal exposure, phytopathogens, and pest attacks. The stressors significantly affect agricultural productivity when exceed a certain threshold. It has been reported that most of the stressed plants are reported to have increased ethylene synthesis from its precursor 1-aminocyclopropane-1-carboxylic acid (ACC). Ethylene is a plant hormone that plays a vital role in the regulation of various physiological processes, such as respiration, nitrogen fixation, and photosynthesis. The increment in the plant hormone ethylene would reduce plant growth and development, and if the ethylene level increased beyond the limit, it could also result in plant death. Therefore, plant growth-promoting bacteria (PGPB) possessing ACC deaminase activity play an essential role in the management of biotic and abiotic stresses by hydrolysing 1-aminocyclopropane-1-carboxylic acid using ACC deaminase. In this review, the importance of ACC deaminase-producing bacteria in promoting plant growth under various abiotic stressors is discussed.
(© 2022. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.)

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies