Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Constrained brain volume in an efficient coding model explains the fraction of excitatory and inhibitory neurons in sensory cortices.

Tytuł:
Constrained brain volume in an efficient coding model explains the fraction of excitatory and inhibitory neurons in sensory cortices.
Autorzy:
Alreja A; Neuroscience Institute, Center for the Neural Basis of Cognition and Machine Learning Department, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States of America.
Nemenman I; Department of Physics, Department of Biology and Initiative in Theory and Modeling of Living Systems, Emory University, Atlanta, Georgia, United States of America.
Rozell CJ; School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, Georgia, United States of America.
Źródło:
PLoS computational biology [PLoS Comput Biol] 2022 Jan 21; Vol. 18 (1), pp. e1009642. Date of Electronic Publication: 2022 Jan 21 (Print Publication: 2022).
Typ publikacji:
Journal Article; Research Support, N.I.H., Extramural; Research Support, U.S. Gov't, Non-P.H.S.
Język:
English
Imprint Name(s):
Original Publication: San Francisco, CA : Public Library of Science, [2005]-
MeSH Terms:
Models, Neurological*
Visual Cortex*/cytology
Visual Cortex*/physiology
Neurons/*physiology
Action Potentials/physiology ; Animals ; Cats ; Computational Biology ; Organ Size/physiology ; Primates ; Rats
References:
Exp Brain Res. 1986;61(2):323-31. (PMID: 3005016)
Biol Cybern. 1990;64(2):165-70. (PMID: 2291903)
Proc Natl Acad Sci U S A. 2010 Sep 7;107(36):15927-32. (PMID: 20798050)
Nat Neurosci. 2004 Jun;7(6):621-7. (PMID: 15156147)
Neuron. 2016 Apr 6;90(1):35-42. (PMID: 27021173)
Anesthesiology. 1998 Jun;88(6):1592-605. (PMID: 9637654)
PLoS Comput Biol. 2015 Jul 14;11(7):e1004353. (PMID: 26172289)
Neuron. 2010 Jan 14;65(1):107-21. (PMID: 20152117)
J Exp Biol. 2008 Jun;211(Pt 11):1792-804. (PMID: 18490395)
Science. 2000 Feb 18;287(5456):1273-6. (PMID: 10678835)
Brain Res. 1993 Apr 23;609(1-2):284-92. (PMID: 8508310)
J Neurosci. 1988 Mar;8(3):920-31. (PMID: 3346729)
Nature. 2013 Jan 3;493(7430):97-100. (PMID: 23172139)
Brain Behav Evol. 2016;88(1):1-13. (PMID: 27547956)
J Cereb Blood Flow Metab. 2001 Oct;21(10):1133-45. (PMID: 11598490)
Anesthesiology. 1999 Aug;91(2):500-11. (PMID: 10443614)
J Comp Neurol. 1994 May 15;343(3):353-61. (PMID: 7517965)
Nat Neurosci. 2015 Feb;18(2):170-81. (PMID: 25622573)
Neuron Behav Data Anal Theory. 2020;3(5):. (PMID: 33644783)
PLoS Comput Biol. 2011 Oct;7(10):e1002250. (PMID: 22046123)
Neural Netw. 2013 Sep;45:134-43. (PMID: 23582485)
PLoS Comput Biol. 2013;9(8):e1003191. (PMID: 24009491)
Neural Comput. 2012 Nov;24(11):2852-72. (PMID: 22920853)
J Physiol. 2018 May 1;596(9):1639-1657. (PMID: 29313982)
Curr Opin Neurobiol. 2004 Aug;14(4):481-7. (PMID: 15321069)
Prog Neurobiol. 1989;32(2):137-58. (PMID: 2645619)
Nature. 2012 Oct 11;490(7419):226-31. (PMID: 23060193)
Neural Comput. 2012 Dec;24(12):3317-39. (PMID: 22970876)
J Neurosci. 2013 Mar 27;33(13):5475-85. (PMID: 23536063)
J Neurocytol. 2002 Mar-Jun;31(3-5):299-316. (PMID: 12815249)
Brain Behav Evol. 2007;69(3):176-95. (PMID: 17106195)
Curr Biol. 2003 Mar 18;13(6):493-7. (PMID: 12646132)
J Comp Neurol. 1994 Jun 15;344(3):349-82. (PMID: 7914896)
Neural Comput. 2008 Oct;20(10):2526-63. (PMID: 18439138)
Front Neuroanat. 2014 Jun 02;8:40. (PMID: 24917792)
Neuroscience. 1989;33(3):499-515. (PMID: 2636704)
Int J Neural Syst. 2014 Aug;24(5):1440001. (PMID: 24875786)
Nature. 2000 Mar 16;404(6775):285-9. (PMID: 10749211)
Cereb Cortex. 2008 May;18(5):1058-78. (PMID: 17720684)
IEEE Trans Neural Netw Learn Syst. 2012 Sep;23(9):1377-89. (PMID: 24199030)
Nat Neurosci. 2014 Jun;17(6):851-7. (PMID: 24747577)
Neuron. 2003 Feb 20;37(4):703-18. (PMID: 12597866)
J Neurophysiol. 2016 Mar;115(3):1399-409. (PMID: 26740531)
Front Neuroanat. 2017 Dec 12;11:118. (PMID: 29311850)
Neuron. 2006 Nov 9;52(3):409-23. (PMID: 17088208)
Nature. 1996 Jun 13;381(6583):607-9. (PMID: 8637596)
Proc Natl Acad Sci U S A. 2012 Dec 4;109(49):E3377-86. (PMID: 23129622)
Trends Neurosci. 2012 Jun;35(6):345-55. (PMID: 22579264)
Proc Natl Acad Sci U S A. 2011 Oct 4;108(40):16807-12. (PMID: 21949377)
J Comput Neurosci. 2007 Apr;22(2):135-46. (PMID: 17053994)
Trends Neurosci. 1989 Mar;12(3):94-101. (PMID: 2469224)
Curr Opin Neurobiol. 2016 Apr;37:75-84. (PMID: 26868041)
Neural Comput. 2014 Jun;26(6):1198-235. (PMID: 24684446)
Curr Opin Neurobiol. 2010 Jun;20(3):306-12. (PMID: 20400290)
J Comp Neurol. 1985 Apr 8;234(2):242-63. (PMID: 3988984)
Neuron. 2012 Jan 12;73(1):159-70. (PMID: 22243754)
Nat Commun. 2014 Dec 11;5:5689. (PMID: 25504329)
J Neurosci. 1987 May;7(5):1503-19. (PMID: 3033170)
Neuron. 2005 Aug 4;47(3):423-35. (PMID: 16055065)
Neuron. 2009 Apr 30;62(2):171-89. (PMID: 19409263)
Neuron. 2010 Sep 9;67(5):858-71. (PMID: 20826316)
Front Neuroanat. 2013 Oct 21;7:35. (PMID: 24155697)
J Neurosci. 2004 Sep 29;24(39):8441-53. (PMID: 15456817)
Vision Res. 1997 Dec;37(23):3311-25. (PMID: 9425546)
Nat Neurosci. 2003 Dec;6(12):1300-8. (PMID: 14625553)
Grant Information:
R01 EY019965 United States EY NEI NIH HHS
Entry Date(s):
Date Created: 20220121 Date Completed: 20220221 Latest Revision: 20220221
Update Code:
20240105
PubMed Central ID:
PMC8809590
DOI:
10.1371/journal.pcbi.1009642
PMID:
35061666
Czasopismo naukowe
The number of neurons in mammalian cortex varies by multiple orders of magnitude across different species. In contrast, the ratio of excitatory to inhibitory neurons (E:I ratio) varies in a much smaller range, from 3:1 to 9:1 and remains roughly constant for different sensory areas within a species. Despite this structure being important for understanding the function of neural circuits, the reason for this consistency is not yet understood. While recent models of vision based on the efficient coding hypothesis show that increasing the number of both excitatory and inhibitory cells improves stimulus representation, the two cannot increase simultaneously due to constraints on brain volume. In this work, we implement an efficient coding model of vision under a constraint on the volume (using number of neurons as a surrogate) while varying the E:I ratio. We show that the performance of the model is optimal at biologically observed E:I ratios under several metrics. We argue that this happens due to trade-offs between the computational accuracy and the representation capacity for natural stimuli. Further, we make experimentally testable predictions that 1) the optimal E:I ratio should be higher for species with a higher sparsity in the neural activity and 2) the character of inhibitory synaptic distributions and firing rates should change depending on E:I ratio. Our findings, which are supported by our new preliminary analyses of publicly available data, provide the first quantitative and testable hypothesis based on optimal coding models for the distribution of excitatory and inhibitory neural types in the mammalian sensory cortices.
Competing Interests: The authors have declared that no competing interests exist.
Zaloguj się, aby uzyskać dostęp do pełnego tekstu.

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies