Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

A modular RNA interference system for multiplexed gene regulation.

Tytuł:
A modular RNA interference system for multiplexed gene regulation.
Autorzy:
Dwijayanti A
Storch M; Imperial College Centre for Synthetic Biology, Imperial College London, London SW7 2AZ, UK.
Stan GB; Imperial College Centre for Synthetic Biology, Imperial College London, London SW7 2AZ, UK.; Department of Bioengineering, Bessemer Building, South Kensington Campus, Imperial College London, London SW7 2AZ, UK.
Baldwin GS; Imperial College Centre for Synthetic Biology, Imperial College London, London SW7 2AZ, UK.; Department of Life Sciences, Sir Alexander Fleming Building, South Kensington Campus, Imperial College London, London SW7 2AZ, UK.
Źródło:
Nucleic acids research [Nucleic Acids Res] 2022 Feb 22; Vol. 50 (3), pp. 1783-1793.
Typ publikacji:
Journal Article; Research Support, Non-U.S. Gov't
Język:
English
Imprint Name(s):
Publication: 1992- : Oxford : Oxford University Press
Original Publication: London, Information Retrieval ltd.
MeSH Terms:
Escherichia coli*/genetics
Escherichia coli*/metabolism
Metabolic Engineering*
Gene Expression Regulation ; Gene Regulatory Networks ; Genetic Engineering ; RNA Interference
References:
Nat Commun. 2018 Dec 21;9(1):5415. (PMID: 30575748)
Nat Comput. 2018;17(4):833-853. (PMID: 30524216)
Nat Rev Genet. 2012 May 18;13(6):406-20. (PMID: 22596318)
Methods. 2018 Jul 1;143:58-69. (PMID: 29309838)
Mol Cell. 2011 Sep 16;43(6):880-91. (PMID: 21925377)
RNA. 2019 Feb;25(2):264-276. (PMID: 30487269)
Bioinformatics. 2009 Aug 1;25(15):1974-5. (PMID: 19398448)
FEMS Microbiol Rev. 2010 Sep;34(5):866-82. (PMID: 20662934)
Nat Rev Mol Cell Biol. 2009 Jun;10(6):410-22. (PMID: 19461664)
ACS Synth Biol. 2017 Apr 21;6(4):648-658. (PMID: 28067500)
Genes Dev. 2011 Feb 15;25(4):294-8. (PMID: 21325130)
Annu Rev Biophys. 2017 May 22;46:131-148. (PMID: 28532217)
J Mol Biol. 2016 Feb 27;428(5 Pt B):862-88. (PMID: 26463592)
FEBS Open Bio. 2017 Apr 25;7(6):777-788. (PMID: 28593133)
J Bacteriol. 2011 Jul;193(14):3546-55. (PMID: 21602329)
Syst Synth Biol. 2015 Sep;9(3):107-23. (PMID: 26279705)
ACS Synth Biol. 2015 Jul 17;4(7):781-7. (PMID: 25746445)
Nucleic Acids Res. 2011 Apr;39(8):e50. (PMID: 21296758)
J Bacteriol. 1999 Oct;181(20):6361-70. (PMID: 10515926)
Nature. 1968 Aug 10;219(5154):588-90. (PMID: 4874917)
Synth Biol (Oxf). 2020 Jul 09;5(1):ysaa010. (PMID: 32995552)
Nucleic Acids Res. 2014 Feb;42(4):2646-59. (PMID: 24234441)
Nucleic Acids Res. 2005 Jul 1;33(Web Server issue):W577-81. (PMID: 15980540)
Nat Methods. 2016 Mar;13(3):233-6. (PMID: 26752768)
Biotechnol Biofuels. 2018 Feb 5;11:26. (PMID: 29441124)
Methods Mol Biol. 2017;1472:79-91. (PMID: 27671933)
Nucleic Acids Res. 2018 Oct 12;46(18):9875-9889. (PMID: 30212900)
Genes Dev. 2000 May 1;14(9):1109-18. (PMID: 10809669)
PLoS Biol. 2007 Sep;5(9):e229. (PMID: 17713988)
RNA. 2005 Jun;11(6):976-84. (PMID: 15872186)
Mol Microbiol. 2011 Dec;82(6):1545-62. (PMID: 22040174)
Phys Biol. 2017 Jul 28;14(5):056001. (PMID: 28350301)
Nucleic Acids Res. 2014 Jul;42(Web Server issue):W119-23. (PMID: 24838564)
ACS Synth Biol. 2012 Jan 20;1(1):6-13. (PMID: 23651005)
ACS Synth Biol. 2014 Aug 15;3(8):525-8. (PMID: 24933158)
Nucleic Acids Res. 2017 Jul 27;45(13):8116-8127. (PMID: 28609783)
Mol Cell. 2010 Feb 26;37(4):567-79. (PMID: 20188674)
Microb Cell Fact. 2016 Dec 19;15(1):211. (PMID: 27993152)
Nat Rev Microbiol. 2011 Aug 15;9(8):578-89. (PMID: 21760622)
Proc Natl Acad Sci U S A. 2012 Oct 2;109(40):E2691-8. (PMID: 22988087)
RNA Biol. 2013 Apr;10(4):619-26. (PMID: 23466677)
Nucleic Acids Res. 2015 Jul 27;43(13):6511-27. (PMID: 26044710)
Proc Natl Acad Sci U S A. 2009 Jun 30;106(26):10655-9. (PMID: 19541626)
Nat Struct Mol Biol. 2009 Aug;16(8):840-6. (PMID: 19620966)
Nucleic Acids Res. 2015 Sep 30;43(17):8502-15. (PMID: 26261213)
Bioinformatics. 2008 Dec 15;24(24):2849-56. (PMID: 18940824)
Nucleic Acids Res. 2016 Nov 16;44(20):9650-9666. (PMID: 27439713)
Antisense Nucleic Acid Drug Dev. 2001 Feb;11(1):29-40. (PMID: 11258619)
J Bacteriol. 2007 Jun;189(11):4243-56. (PMID: 17416652)
ACS Synth Biol. 2012 May 18;1(5):163-71. (PMID: 23651154)
Nat Biotechnol. 2013 Feb;31(2):170-4. (PMID: 23334451)
Curr Opin Chem Biol. 2013 Dec;17(6):878-92. (PMID: 24268307)
Genome Biol. 2012 May 25;13(5):R37. (PMID: 22632713)
Nucleic Acids Res. 2018 Jul 2;46(W1):W25-W29. (PMID: 29788132)
Nucleic Acids Res. 2011 Apr;39(7):2918-30. (PMID: 21138960)
Nat Biotechnol. 2009 Oct;27(10):946-50. (PMID: 19801975)
Front Bioeng Biotechnol. 2014 Nov 26;2:60. (PMID: 25505788)
Nucleic Acids Res. 2006;34(20):e138. (PMID: 17062631)
Nat Protoc. 2013 Sep;8(9):1694-707. (PMID: 23928502)
J Bacteriol. 1994 Jan;176(2):531-4. (PMID: 8288550)
Nat Rev Microbiol. 2014 May;12(5):381-90. (PMID: 24686414)
Proc Natl Acad Sci U S A. 2013 Sep 10;110(37):E3487-96. (PMID: 23980183)
J Bacteriol. 2004 Oct;186(20):6689-97. (PMID: 15466019)
ACS Synth Biol. 2016 Dec 16;5(12):1441-1454. (PMID: 27434774)
Entry Date(s):
Date Created: 20220121 Date Completed: 20220415 Latest Revision: 20220415
Update Code:
20240105
PubMed Central ID:
PMC8860615
DOI:
10.1093/nar/gkab1301
PMID:
35061908
Czasopismo naukowe
The rational design and realisation of simple-to-use genetic control elements that are modular, orthogonal and robust is essential to the construction of predictable and reliable biological systems of increasing complexity. To this effect, we introduce modular Artificial RNA interference (mARi), a rational, modular and extensible design framework that enables robust, portable and multiplexed post-transcriptional regulation of gene expression in Escherichia coli. The regulatory function of mARi was characterised in a range of relevant genetic contexts, demonstrating its independence from other genetic control elements and the gene of interest, and providing new insight into the design rules of RNA based regulation in E. coli, while a range of cellular contexts also demonstrated it to be independent of growth-phase and strain type. Importantly, the extensibility and orthogonality of mARi enables the simultaneous post-transcriptional regulation of multi-gene systems as both single-gene cassettes and poly-cistronic operons. To facilitate adoption, mARi was designed to be directly integrated into the modular BASIC DNA assembly framework. We anticipate that mARi-based genetic control within an extensible DNA assembly framework will facilitate metabolic engineering, layered genetic control, and advanced genetic circuit applications.
(© The Author(s) 2022. Published by Oxford University Press on behalf of Nucleic Acids Research.)

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies