Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

The impact of insecticides containing deltamethrin and cyfluthrin on the composition of surface compounds in the larvae, females and males of Tenebrio molitor.

Tytuł:
The impact of insecticides containing deltamethrin and cyfluthrin on the composition of surface compounds in the larvae, females and males of Tenebrio molitor.
Autorzy:
Wojciechowska M; Laboratory of Analysis of Natural Compounds, Department of Environmental Analysis, Faculty of Chemistry, University of Gdańsk, Gdańsk, Poland.
Stepnowski P; Laboratory of Chemical Environmental Risks, Department of Environmental Analysis, Faculty of Chemistry, University of Gdańsk, Gdańsk, Poland.
Gołębiowski M; Laboratory of Analysis of Natural Compounds, Department of Environmental Analysis, Faculty of Chemistry, University of Gdańsk, Gdańsk, Poland.
Źródło:
Biomedical chromatography : BMC [Biomed Chromatogr] 2022 May; Vol. 36 (5), pp. e5346. Date of Electronic Publication: 2022 Feb 23.
Typ publikacji:
Journal Article
Język:
English
Imprint Name(s):
Publication: 1990- : Chichester : Wiley
Original Publication: London : Heyden & Son, c1986-1990
MeSH Terms:
Insecticides*/pharmacology
Pyrethrins*
Tenebrio*
Alkanes/pharmacology ; Animals ; Fatty Acids/pharmacology ; Female ; Larva ; Male ; Nitriles
References:
Akino, T., Yamamura, K., Wakamura, S., & Yamaoka, R. (2004). Direct behavioral evidence for hydrocarbons as nestmate recognition cues in Formica japonica (hymenoptera: Formicidae). Applied Entomology and Zoology, 39, 381-387. https://doi.org/10.1303/aez.2004.381.
Arrase, E. L., & Soulages, J. L. (2010). Insect fat body: Energy, metabolism, and regulation. Annual Review of Entomology, 55, 207-225. https://doi.org/10.1146/annurev-ento-112408-085356.
Athanassiou, C. G. (2006). Toxicity of beta cyfluthrin applied alone or in combination with diatomaceous earth against adults of Sitophilus oryzae (L.) (Coleoptera: Curculionidae) and Tribolium confusum DuVal (Coleoptera: Tenebrionidae) on stored wheat. Crop Protection, 25, 788-794. https://doi.org/10.1016/j.cropro.2005.10.015.
Augustynowicz, M., Malinski, E., Warnke, Z., Szafranek, J., & Nawrot, J. (1987). Cuticular hydrocarbons of the German cockroach, Blatella germanica L. Comparative Biochemistry and Physiology, 86B, 519-523. https://doi.org/10.1016/0305-0491(87)90441-X.
Aydin-Sinan, H., Gungordu, A., & Ozmen, M. (2012). Toxic effects of deltamethrin and λ-cyhalothrin on Xenopusl aevis tadpoles. Journal of Environmental Science and Health Part B, 47, 397-402. https://doi.org/10.1080/03601234.2012.648545.
Badji, C. A., Guedes, R. N. C., Silva, A. A., & Araújo, R. A. (2004). Impact of deltamethrin on arthropods in maize under conventional and no-tillage cultivation. Crop Protection, 23, 1031-1039. https://doi.org/10.1016/j.cropro.2004.03.003.
Barbarin, A. M., Bellicanta, G. S., Osborne, J. A., Schal, C., & Jenkins, N. E. (2017). Susceptibility of insecticide-resistant bed bugs (Cimex lectularius) to infection by fungal biopesticide. Pest Management Science, 73, 1568-1573. https://doi.org/10.1002/ps.4576.
Bazok, R., Ceranić-Sertić, M., Igrc Barcić, J., Barosić, J., Kozina, A., Kos, T., Lemić, D., & Čačija, M. (2012). Seasonal flight, optimal timing and effocacy of selected insecticides for cabbage maggot (Delia radicum L., Diptera: Anthomyiidae) control. Insects, 3, 1001-1027. https://doi.org/10.3390/insects3041001.
Beers, E. H., & Schmidt, R. A. (2014). Impacts of orchard pesticides on Galendromus occidentalis: Lethal and sublethal effects. Crop Protection, 56, 16-24. https://doi.org/10.1016/j.cropro.2013.10.010.
Buckner, J. S. (1993). Cuticular polar lipids of insects. In D. W. Stanley-Samuelson & D. R. Nelson (Eds.), In insect lipids (pp. 227-270). Lincoln, NE: University of Nebraska Press.
Buckner, J. S., Mardaus, M. C., & Nelson, D. R. (1996). Cuticular lipid composition of Heliothis virescens and Helicoverpa zea pupae. Comparative Biochemistry and Physiology, Part B, 114, 207-216. https://doi.org/10.1016/0305-0491(96)00028-4.
Can Ulu, T., Sadic, B., & Susurluk, I. A. (2016). Effects of different pesticides on virulence and mortality of some entomopatogenic nematodes. ISJ - Invertebrate Survival Journal, 13, 111-115. https://doi.org/10.25431/1824-307X/isj.v13i1.111-115.
Cerkowniak, M., Boguś, M. I., Włóka, E., Stepnowski, P., & Gołębiowski, M. (2017). Application of headspace solid-phase microextraction followed by gas chromatography coupled with mass spectrometry to determine esters of carboxylic acids and other volatile compounds in Dermestes maculatus and Dermestes ater lipids. Biomedical Chromatography, 32, e4051. https://doi.org/10.1002/bmc.4051.
Cerkowniak, M., Ostachowska, A., Słocińska, M., Rosiński, G., Stepnowski, P., & Gołębiowski, M. (2015). The influence of hormones on the lipid profile in the fat body of insects. ISJ - Invertebrate Survival Journal, 12, 225-232. ISSN 1824-307X.
Cerkowniak, M., Puckowski, A., Stepnowski, P., & Gołębiowski, M. (2013). The use of chromatographic techniques for the separation and the identification of insect lipids. Journal of Chromatography B, 937, 67-78. https://doi.org/10.1016/j.jchromb.2013.08.023.
Dapporto, L., Santini, A., Dani, F. R., & Turillazi, S. (2007). Workers of a polistes wasp detect the presence of their queen by chemical cues. Chemical Senses, 32, 795-802. https://doi.org/10.1093/chemse/bjm047.
Ding, Y., Weston, D. P., You, J., Rothert, A. K., & Lydy, M. J. (2011). Toxicity of sediment-associated pesticides to Chironomus dilutes and Hyalella azteca. Archives of Environmental Contamination and Toxicology, 61, 83-92. https://doi.org/10.1007/s00244-010-9614-2.
Gołębiowski, M., Cerkowniak, M., Dawgul, M., Kamysz, W., Boguś, M. I., & Stepnowski, P. (2013). The antifungal activity of the cuticular and internal fatty acid methyl esters and alcohols in Calliphora vomitoria. Parasitology, 140, 972-985. https://doi.org/10.1017/S0031182013000267.
Gołębiowski, M., Cerkowniak, M., Ostachowska, A., Boguś, M. I., & Stepnowski, P. (2016). Determination of cuticular and internal fatty acids of Chorthippus brunneus males and females using HPLC-LLSD and GC-MS. Biomedical Chromatography, 30, 1318-1323. https://doi.org/10.1002/bmc.3688.
Gołębiowski, M., Cerkowniak, M., Ostachowska, A., Naczk, A. M., Bogus, M. I., & Stepnowski, P. (2016). Effect of Conidiobolus coronatus on the cuticular and internal lipid composition of Tettigonia viridissima males. Chemistry and Biodiversity, 13, 982-989. https://doi.org/10.1002/cbdv.201500316.
Gołębiowski, M., Dawgul, M., Kamysz, W., Boguś, M. I., Wieloch, W., Włóka, E., Paszkiewicz, M., Przybysz, E., & Stepnowski, P. (2012). Antimicrobial activity of alcohols from Musca domestica. Journal of Experimental Biology, 215, 3419-3428. https://doi.org/10.1242/jeb.073155.
Gołębiowski, M., Paszkiewicz, M., Grubba, A., Gąsiewska, D., Boguś, M. I., Włóka, E., Wieloch, W., & Stepnowski, P. (2012). Cuticular and internal n-alkane composition of Lucilia sericata larvae, pupae, male and female imagines: Application of HPLC-LLSD and GC/MS-SIM. Bulletin of Entomological Research, 102, 453-460. https://doi.org/10.1017/S0007485311000800.
Gołębiowski, M., Sosnowska, A., Puzyn, T., Boguś, M. I., Wieloch, W., Włóka, E., & Stepnowski, P. (2014). Application two-ways hierarchic cluster analysis for identification similarities between the individual lipid fractions of Lucilia sericata. Chemistry and Biodiversity, 11, 733-748. https://doi.org/10.1002/cbdv.201300294.
Gołębiowski, M., Urbanek, A., Oleszczak, A., Dawgul, M., Kamysz, W., Boguś, M. I., & Stepnowski, P. (2014). The antifungal activity of fatty acids of all stages of Sarcophaga carnaria L. (Diptera: Sarcophagidae). Microbiological Research, 169, 279-286. https://doi.org/10.1016/j.micres.2013.07.011.
Hebanowska, E., Malinski, E., Dubis, E., Oksman, P., Pihlaja, K., Nawrot, J., & Szafranek, J. (1990). The cuticular hydrocarbons of the larvae of Anagasta kuehniella Z. Comparative Biochemistry and Physiology, 95B, 699-703. https://doi.org/10.1016/0305-0491(90)90307-F.
Hill, B. D. (1983). Persistence of deltamethrin in a Lethbridge sandy clay loam. Journal of Environmental Science and Health Part B, 18, 691-703. https://doi.org/10.1080/03601238309372400.
Hliszczański, J., Jędrzejewski, M., Krupska, K., Maciantowicz, M., Mazur, W., & Porębski, Ł. (2014). Podręcznik najlepszych praktyk ochrony owadów. Warszawa: Centrum Koordynacji Projektów Środowiskowych.
Krams, I., Daukste, J., Kivleniece, I., Krama, T., Rantala, M. J., Ramey, G., & Šauša, L. (2011). Female choice reveals terminal investment in male mealworm beetles Tenebrio molitor after a repeated activation of the immune system. Journal of Insect Science, 11, 1-14. https://doi.org/10.1673/031.011.5601.
Lescourret, F. (2017). Toward a reduced use of pesticides in European farming systems: An introduction to the PURE project. Crop Protection, 97, 7-9. https://doi.org/10.1016/j.cropro.2016.12.004.
Lew, S., Lew, M., Biedunkiewicz, A., & Szarek, J. (2013). Impact of pesticide contamination on aquatic microorganism populations in the littoral zone. Archives of Environmental Contamination and Toxicology, 64, 399-409. https://doi.org/10.1007/s00244-012-9852-6.
Li, A. Y., Lohmeyer, K. H., & Miller, J. A. (2009). Dynamics and mechanisms of permethrin resistance in a field population of the horn fly, Haematobia irritans irritans. Insect Sci., 16, 175-184. https://doi.org/10.1111/j.1744-7917.2009.00269.x.
Lofty, H. M., Abd El-Aleem, A. E.-A. A., & Monir, H. H. (2013). Detrermination of insecticides malathion and lambda-cythalothrin residues in zucchini by gas chromatography. Bulletin of Faculty of Pharmacy, Cairo University, 51, 255-260. https://doi.org/10.1016/j.bfopcu.2013.08.001.
Loha, K. M., Lamoree, M., Weiss, J. M., & de Boer, J. (2018). Import, disposal, and health impacts of pesticides in the East Africa rift (EAR) zone: A review on management and policy analysis. Crop Protection, 112, 322-331. https://doi.org/10.1016/j.cropro.2018.06.014.
May, W. E., Soroka, J. J., Loeppky, H. A., & Murrell, D. C. (2003). The effects of trichlorfon and deltamethrin on alfalfa plant bug and lygus bug (Heteroptera: Miridae) populations in alfalfa grown in Canada. Crop Protection, 22, 883-889. https://doi.org/10.1016/S0261-2194(03)00084-X.
Medina-Cleghorn, D., Heslin, A., Morris, P. J., Mulvihill, M. M., & Nomura, D. K. (2014). Multidimensional profiling platforms reveal metabolic dysergulation caused by organophosphorus pesticides. ACS Chemical Biology, 9, 423-432. https://doi.org/10.1021/cb400796c.
Nelson, D. R., Guershon, M., & Gerling, D. (1998). The surface wax composition of the exuviae and adults of Aleyrodes singularis. Comparative Biochemistry and Physiology, 119B, 655-665. https://doi.org/10.1016/S0305-0491(98)00041-8.
Nelson, D. R., Olson, D. L., & Fatland, C. L. (2002). Cuticular hydrocarbons of the flea beetles, Aphthona lacertosa and Aphthona nigriscutis, biocontrol agents for leafy spurge. Comparative Biochemistry and Physiology, 133B, 337-350. https://doi.org/10.1016/S1096-4959(02)00161-6.
Noguez, J. H., Conner, E. S., Zhou, Y., Ciche, T. A., Ragains, J. R., & Butcher, R. A. A. (2012). Novel ascaroside controls the parasitic life cycle of the entomopathogenic nematode Heterorhabditis bacteriophora. ASC Chemical Biology, 7, 961-966. https://doi.org/10.1021/cb300056q.
Park, J. B., Choi, W. H., Kim, S. H., Jin, H. J., Han, Y. S., Lee, Y. S., & Kim, N. J. (2014). Developmental characteristics of Tenebrio molitor larvae (Coleoptera: Tenebrionidae) in different instars. International Journal of Industrial Entomology, 28, 5-9. https://doi.org/10.7852/ijie.2014.28.1.5.
Soliday, C. L., Blomquist, G. J., & Jackson, L. L. (1974). Cuticular lipids of insects VI. Cuticular lipids of the grasshoppers Melanoplus sanguinipes and Melanoplus packardii. Journal of Lipid Research, 15, 399-405PMID: 4851234. https://doi.org/10.1016/S0022-2275(20)36788-2.
Stanley-Samuelson, D. W., Jurenka, R. A., Cripps, C., Blomquist, G. J., & de Renobales, M. (1988). Fatty acids in insects: Composition, metabolism, and biological significance. Archives of Insect Biochemistry and Physiology, 9, 1-33. https://doi.org/10.1002/arch.940090102.
Taylor, R. W., Romaine, I. M., Liu, C., Murthi, P., Jones, P. L., Waterson, A. G., Sulikowski, G. A., & Zwiebel, L. J. (2012). Structure−activity relationship of a broad-spectrum insect odorant receptor agonist. ASC Chemical Biology, 7, 1647-1652. https://doi.org/10.1021/cb300331z.
Thany, S. H., Bourdin, C. M., Garton, J., Laurent, A. D., Mathe-Allainmat, M., Lebreton, J., & Questel, J. Y. (2015). Similar comparative low and high doses of deltamethrin and acetamiprid differently impair the retrieval of the proboscis extension relfex in the forager honey bee (Apis mellifera). Insect Sci., 6, 805-814. https://doi.org/10.3390/insects6040805.
Tsakas, S., & Marmaras, V. J. (2010). Insect immunity and its signalling: An overview. ISJ - Invertebrate Survival Journal, 7, 228-238. SSN 1824-307X.
Vincent, C., Weintraub, P. G., Hallman, G. J., & Fleurat-Lessard, F. (2009). Insect management with physical methods in pre- and post-harvest situations. In E. B. Radcliffe, W. D. Hutchison, & R. E. Cancelado (Eds.), Integrated Pest management. Cambridge University Press.
Wojciechowska, M., Stepnowski, P., & Gołębiowski, M. (2016). The use of insecticides to control insects pests. ISJ - Invertebrate Survival Journal, 13, 210-220. https://doi.org/10.25431/1824-307X/isj.v13i1.210-220.
Wojciechowska, M., Stepnowski, P., & Gołębiowski, M. (2019a). Cyfluthrin and deltamethrin induce changes in the fat body composition of Tenebrio molitor larvae, males and females. Chemistry and Biodiversity, 16, e1800515. https://doi.org/10.1002/cbdv.201800515.
Wojciechowska, M., Stepnowski, P., & Gołębiowski, M. (2019b). Identification and quantitative analysis of lipids and other organic compounds contained in eggs of Colorado potato beetle (Leptinotarsa decemlineata). Journal of Plant Diseases and Protection, 126, 379-384. https://doi.org/10.1007/s41348-019-00216-w.
Yamamoto, M., Takeuchi, Y., Ohmasa, Y., Yamazawa, H., & Ando, T. (1999). Chiral HPLC resolution of monoepoxides derived from 6,9-dienes and its application to stereochemistry assignment of fruit-piercing noctuid pheromone. Biomedical Chromatography, 13, 410-417. https://doi.org/10.1002/(SICI)1099-0801(199910)13:6<410::AID-BMC902>3.0.CO;2-4.
Grant Information:
DS 530-8617-D-594-21 Polish Ministry of Research and Higher Education; BMN 538-8610-B331-18 Polish Ministry of Research and Higher Education
Contributed Indexing:
Keywords: T. molitor; cyfluthrin; deltamethrin; gas chromatography-mass spectrometry; insecticides; surface compounds
Substance Nomenclature:
0 (Alkanes)
0 (Fatty Acids)
0 (Insecticides)
0 (Nitriles)
0 (Pyrethrins)
2JTS8R821G (decamethrin)
SCM2QLZ6S0 (cyfluthrin)
Entry Date(s):
Date Created: 20220123 Date Completed: 20220419 Latest Revision: 20220419
Update Code:
20240105
DOI:
10.1002/bmc.5346
PMID:
35066890
Czasopismo naukowe
This paper presents the effect of insecticides on the composition of the surface compounds of one of the most harmful insects, Tenebrio molitor, by analysis using GC-MS. As a result of the use of insecticides, the composition of the chemical compounds on the surface of insects changes, depending on the insecticides used. The most numerous groups of the marked compounds were fatty acids, alkanes, esters and sterols. The content of the identified compounds in the larvae increased at both 24 and 48 h after the application of insecticides, in comparison with the control samples. The content of identified compounds in the samples taken from the females increased 24, 48 and 72 h after the application of insecticides in comparison with the control samples. By contrast, in samples prepared from males, the content of identified compounds decreased 24 h after the application of insecticides, compared with the control samples. The highest content of chemical compounds was for fatty acids and alkanes after the use of insecticides. The content of fatty acids after the application of the insecticide with deltamethrin was 62.1 ± 3.3-466.9 ± 5.9 μg/g, and after the application of the insecticide with cyfluthrin was 49.9 ± 1.9-458.3 ± 4.2 μg/g. However, the content of alkanes after the use of deltamethrin was 115.6 ± 4.2-4672.0 ± 32.1 μg/g, and after the use of cyfluthrin was 189.4 ± 3.8-3975.0 ± 10.2 μg/g.
(© 2022 John Wiley & Sons, Ltd.)

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies