Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Effects of cholesterol on the size distribution and bending modulus of lipid vesicles.

Tytuł:
Effects of cholesterol on the size distribution and bending modulus of lipid vesicles.
Autorzy:
Karal MAS; Department of Physics, Bangladesh University of Engineering and Technology, Dhaka, Bangladesh.
Mokta NA; Department of Physics, Bangladesh University of Engineering and Technology, Dhaka, Bangladesh.
Levadny V; Theoretical Problem Center of Physico-Chemical Pharmacology, Russian Academy of Sciences, Moscow, Russia.
Belaya M; Department of Mathematics of Russian State University for the Humanities, Moscow, Russia.
Ahmed M; Department of Physics, Bangladesh University of Engineering and Technology, Dhaka, Bangladesh.
Ahamed MK; Department of Physics, Bangladesh University of Engineering and Technology, Dhaka, Bangladesh.
Ahammed S; Department of Physics, Bangladesh University of Engineering and Technology, Dhaka, Bangladesh.
Źródło:
PloS one [PLoS One] 2022 Jan 28; Vol. 17 (1), pp. e0263119. Date of Electronic Publication: 2022 Jan 28 (Print Publication: 2022).
Typ publikacji:
Journal Article; Research Support, Non-U.S. Gov't
Język:
English
Imprint Name(s):
Original Publication: San Francisco, CA : Public Library of Science
MeSH Terms:
Models, Chemical*
Cholesterol/*chemistry
Phosphatidylcholines/*chemistry
Phosphatidylglycerols/*chemistry
Unilamellar Liposomes/*chemistry
References:
Soft Matter. 2016 Sep 21;12(35):7364-71. (PMID: 27510092)
J Phys Condens Matter. 2006 Jul 19;18(28):S1151-76. (PMID: 21690835)
J Fluoresc. 2020 Jul;30(4):735-740. (PMID: 32472291)
Biophys J. 2009 May 6;96(9):3629-37. (PMID: 19413968)
Phys Rev E Stat Nonlin Soft Matter Phys. 2009 Aug;80(2 Pt 1):021931. (PMID: 19792175)
Proc Natl Acad Sci U S A. 2020 Sep 8;117(36):21896-21905. (PMID: 32843347)
Eur Biophys J. 2020 Jul;49(5):371-381. (PMID: 32494845)
Chem Phys Lipids. 2006 Nov-Dec;144(2):146-59. (PMID: 17045578)
Biophys J. 2000 Jul;79(1):328-39. (PMID: 10866959)
J Phys Chem B. 2020 Jul 23;124(29):6299-6311. (PMID: 32597189)
Biophys J. 2004 Dec;87(6):3882-93. (PMID: 15377511)
Phys Rev Lett. 1990 Apr 23;64(17):2094-2097. (PMID: 10041575)
Eur Phys J E Soft Matter. 2021 Apr 28;44(4):62. (PMID: 33909146)
Eur Biophys J. 2019 Dec;48(8):731-741. (PMID: 31552440)
PLoS One. 2014 Nov 26;9(11):e113405. (PMID: 25426933)
J Pharm Sci. 2001 Jun;90(6):667-80. (PMID: 11357170)
Proc Natl Acad Sci U S A. 2021 May 18;118(20):. (PMID: 33952694)
Biochim Biophys Acta. 2000 Nov 10;1469(3):159-95. (PMID: 11063882)
Phys Rev Lett. 1996 Dec 2;77(23):4788-4791. (PMID: 10062631)
Eur Biophys J. 2019 May;48(4):349-359. (PMID: 30918998)
Biochim Biophys Acta. 1973 Apr 25;307(1):27-41. (PMID: 4736378)
Proc Natl Acad Sci U S A. 2009 Mar 10;106(10):3654-8. (PMID: 19225105)
J Phys D Appl Phys. 2018 Aug;51(34):. (PMID: 30655651)
Langmuir. 2015 Mar 24;31(11):3391-401. (PMID: 25746858)
Phys Rev E. 2021 Oct;104(4-1):044405. (PMID: 34781561)
Adv Colloid Interface Sci. 2014 Jun;208:225-34. (PMID: 24666592)
Adv Colloid Interface Sci. 2006 Sep 13;121(1-3):51-75. (PMID: 16769012)
J Phys Chem B. 2010 Jun 10;114(22):7516-23. (PMID: 20469902)
J Cell Physiol. 1969 Feb;73(1):49-60. (PMID: 5765779)
Phys Rev Lett. 2008 May 16;100(19):198103. (PMID: 18518492)
Sci Rep. 2014 May 21;4:5005. (PMID: 24845659)
Biochim Biophys Acta. 2002 Apr 12;1561(2):129-34. (PMID: 11997113)
Biochemistry. 2012 Jun 26;51(25):5160-72. (PMID: 22668506)
New J Phys. 2011 Sep 16;13:. (PMID: 21966242)
Trends Pharmacol Sci. 2009 Nov;30(11):592-9. (PMID: 19837467)
Biophys J. 1997 Jul;73(1):267-76. (PMID: 9199791)
Eur Biophys J. 2020 Jan;49(1):59-69. (PMID: 31796980)
Chembiochem. 2010 May 3;11(7):848-65. (PMID: 20336703)
Eur Biophys J. 2020 Jul;49(5):361-370. (PMID: 32535676)
Chem Phys Lipids. 2020 Sep;231:104935. (PMID: 32569600)
Biophys J. 2017 Nov 7;113(9):2004-2015. (PMID: 29117524)
PLoS One. 2013 Jun 18;8(6):e66162. (PMID: 23823623)
Biophys J. 2008 Jun;94(12):4725-36. (PMID: 18339739)
Biophys J. 1997 Jun;72(6):2616-29. (PMID: 9168037)
Biophys J. 1993 Jun;64(6):1967-70. (PMID: 8369417)
Biophys J. 1990 Oct;58(4):997-1009. (PMID: 2249000)
Eur Biophys J. 2004 Dec;33(8):732-41. (PMID: 15221234)
Biophys J. 2009 Sep 16;97(6):1636-46. (PMID: 19751668)
PLoS One. 2021 Jul 29;16(7):e0254930. (PMID: 34324548)
Chem Phys Lipids. 2020 Aug;230:104916. (PMID: 32407734)
Proc Natl Acad Sci U S A. 2017 Mar 14;114(11):2910-2915. (PMID: 28265065)
Nanotechnology. 2011 May 13;22(19):195102. (PMID: 21436507)
Soft Matter. 2019 Jul 24;15(29):6006-6013. (PMID: 31298256)
J Cell Biol. 1973 Feb;56(2):275-303. (PMID: 4264788)
J Gen Physiol. 2008 Jan;131(1):69-76. (PMID: 18166626)
Biophys J. 1997 Aug;73(2):865-9. (PMID: 9251803)
Soft Matter. 2020 Sep 23;:. (PMID: 32966528)
Biophys J. 2004 Aug;87(2):1076-91. (PMID: 15298912)
Proc Natl Acad Sci U S A. 2021 May 18;118(20):. (PMID: 33952693)
Artif Cells Nanomed Biotechnol. 2017 Dec;45(8):1478-1489. (PMID: 28278584)
Biophys J. 2006 Mar 1;90(5):1639-49. (PMID: 16326903)
J Membr Biol. 2005 Dec;208(3):193-202. (PMID: 16604469)
Chem Phys Lipids. 2011 Jul;164(5):351-8. (PMID: 21524642)
Biochemistry. 2016 Aug 2;55(30):4154-65. (PMID: 27420912)
Biophys J. 1996 May;70(5):2248-55. (PMID: 9172748)
Proc Natl Acad Sci U S A. 2009 Apr 7;106(14):5622-6. (PMID: 19304798)
Adv Drug Deliv Rev. 2013 Jan;65(1):36-48. (PMID: 23036225)
Phys Rev E. 2020 Jan;101(1-1):012404. (PMID: 32069606)
Chem Phys Lipids. 2015 Jan;185:3-10. (PMID: 24746555)
Substance Nomenclature:
0 (Phosphatidylcholines)
0 (Phosphatidylglycerols)
0 (Unilamellar Liposomes)
66322-31-4 (1,2-dioleoyl-sn-glycero-3-phosphoglycerol)
97C5T2UQ7J (Cholesterol)
EDS2L3ODLV (1,2-oleoylphosphatidylcholine)
Entry Date(s):
Date Created: 20220128 Date Completed: 20220221 Latest Revision: 20220221
Update Code:
20240105
PubMed Central ID:
PMC8797199
DOI:
10.1371/journal.pone.0263119
PMID:
35089965
Czasopismo naukowe
The influence of cholesterol fraction in the membranes of giant unilamellar vesicles (GUVs) on their size distributions and bending moduli has been investigated. The membranes of GUVs were synthesized by a mixture of two elements: electrically neutral lipid 1, 2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) and cholesterol and also a mixture of three elements: electrically charged lipid 1,2-dioleoyl-sn-glycero-3-phospho-(1'-rac-glycerol) (DOPG), DOPC and cholesterol. The size distributions of GUVs have been presented by a set of histograms. The classical lognormal distribution is well fitted to the histograms, from where the average size of vesicle is obtained. The increase of cholesterol content in the membranes of GUVs increases the average size of vesicles in the population. Using the framework of Helmholtz free energy of the system, the theory developed by us is extended to explain the experimental results. The theory determines the influence of cholesterol on the bending modulus of membranes from the fitting of the proper histograms. The increase of cholesterol in GUVs increases both the average size of vesicles in population and the bending modulus of membranes.
Competing Interests: The authors have declared that no competing interests exist.
Zaloguj się, aby uzyskać dostęp do pełnego tekstu.

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies