Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Noncanonical Wnt5a/JNK Signaling Contributes to the Development of D-Gal/LPS-Induced Acute Liver Failure.

Tytuł:
Noncanonical Wnt5a/JNK Signaling Contributes to the Development of D-Gal/LPS-Induced Acute Liver Failure.
Autorzy:
Ji XF; Department of Hepatology, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, 266035, China.
Fan YC; Department of Hepatology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China.; Institute of Hepatology, Shandong University, Jinan, 250012, China.
Sun F; Department of Hepatology, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, 266035, China.
Wang JW; Department of Hepatology, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, 266035, China.
Wang K; Department of Hepatology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China. .; Institute of Hepatology, Shandong University, Jinan, 250012, China. .; Hepatology Institute of Shandong University, Wenhuaxi Road 107#, 250012, Jinan, Shandong, China. .
Źródło:
Inflammation [Inflammation] 2022 Jun; Vol. 45 (3), pp. 1362-1373. Date of Electronic Publication: 2022 Jan 31.
Typ publikacji:
Journal Article
Język:
English
Imprint Name(s):
Publication: 1999- : New York, NY : Kluwer Academic/Plenum Publishers
Original Publication: New York, Plenum Press.
MeSH Terms:
Galactosamine*/toxicity
Liver Failure, Acute*/chemically induced
Liver Failure, Acute*/metabolism
Animals ; Cytokines/metabolism ; Lipopolysaccharides/pharmacology ; Liver/metabolism ; Mice ; Mice, Inbred C57BL ; Tumor Necrosis Factor-alpha/metabolism
References:
Stravitz, R.T., and W.M. Lee. 2019. Acute liver failure. Lancet 394: 869–881. (PMID: 10.1016/S0140-6736(19)31894-X)
Grek, A., and L. Arasi. 2016. Acute liver failure. AACN Advanced Critical Care 27: 420–429. (PMID: 10.4037/aacnacc2016324)
Dong, V., R. Nanchal, and C.J. Karvellas. 2020. Pathophysiology of acute liver failure. Nutrition in Clinical Practice 35: 24–29. (PMID: 10.1002/ncp.10459)
Triantafyllou, E., K.J. Woollard, M.J.W. McPhail, C.G. Antoniades, and L.A. Possamai. 2018. The role of monocytes and macrophages in acute and acute-on-chronic liver failure. Frontiers in immunology 9: 2948. (PMID: 10.3389/fimmu.2018.02948)
Possamai, L.A., M.R. Thursz, J.A. Wendon, and C.G. Antoniades. 2014. Modulation of monocyte/macrophage function: A therapeutic strategy in the treatment of acute liver failure. Journal of hepatology 61: 439–445. (PMID: 10.1016/j.jhep.2014.03.031)
Maes, M., M. Vinken, and H. Jaeschke. 2016. Experimental models of hepatotoxicity related to acute liver failure. Toxicology and applied pharmacology 290: 86–97. (PMID: 10.1016/j.taap.2015.11.016)
Farghali, H., M. Kgalalelo Kemelo, L. Wojnarová, and N. Kutinová Canová. 2016. In vitro and in vivo experimental hepatotoxic models in liver research: Applications to the assessment of potential hepatoprotective drugs. Physiological research 65: S417–S425. (PMID: 10.33549/physiolres.933506)
Zhong, W., K. Qian, J. Xiong, K. Ma, A. Wang, and Y. Zou. 2016. Curcumin alleviates lipopolysaccharide induced sepsis and liver failure by suppression of oxidative stress-related inflammation via PI3K/AKT and NF-κB related signaling. Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie 83: 302–313.
Galanos, C., M.A. Freudenberg, and W. Reutter. 1979. Galactosamine-induced sensitization to the lethal effects of endotoxin. Proceedings of the National Academy of Sciences of the United States of America 76: 5939–5943. (PMID: 10.1073/pnas.76.11.5939)
Logan, C.Y., and R. Nusse. 2004. The Wnt signaling pathway in development and disease. Annual review of cell and developmental biology 20: 781–810. (PMID: 10.1146/annurev.cellbio.20.010403.113126)
George, S.J. 2008. Wnt pathway: A new role in regulation of inflammation. Arteriosclerosis, thrombosis, and vascular biology 28: 400–402. (PMID: 10.1161/ATVBAHA.107.160952)
Shao, Y., Q. Zheng, W. Wang, N. Xin, X. Song, and C. Zhao. 2016. Biological functions of macrophage-derived Wnt5a, and its roles in human diseases. Oncotarget 7: 67674–67684. (PMID: 10.18632/oncotarget.11874)
Sessa, R., D. Yuen, S. Wan, M. Rosner, P. Padmanaban, S. Ge, A. Smith, R. Fletcher, A. Baudhuin-Kessel, T.P. Yamaguchi, R.A. Lang, and L. Chen. 2016. Monocyte-derived Wnt5a regulates inflammatory lymphangiogenesis. Cell research 26: 262–265. (PMID: 10.1038/cr.2015.105)
Pereira, C., D.J. Schaer, E.B. Bachli, M.O. Kurrer, and G. Schoedon. 2008. Wnt5A/CaMKII signaling contributes to the inflammatory response of macrophages and is a target for the antiinflammatory action of activated protein C and interleukin-10. Arteriosclerosis, thrombosis, and vascular biology 28: 504–510. (PMID: 10.1161/ATVBAHA.107.157438)
Blumenthal, A., S. Ehlers, J. Lauber, J. Buer, C. Lange, T. Goldmann, H. Heine, E. Brandt, and N. Reiling. 2006. The Wingless homolog WNT5A and its receptor Frizzled-5 regulate inflammatory responses of human mononuclear cells induced by microbial stimulation. Blood 108: 965–973. (PMID: 10.1182/blood-2005-12-5046)
Nanbara, H., N. Wara-aswapati, T. Nagasawa, Y. Yoshida, R. Yashiro, Y. Bando, H. Kobayashi, J. Khongcharoensuk, D. Hormdee, W. Pitiphat, J.A. Boch, and Y. Izumi. 2012. Modulation of Wnt5a expression by periodontopathic bacteria. PLoS One 7: e34434. (PMID: 10.1371/journal.pone.0034434)
Jati, S., S. Kundu, A. Chakraborty, S.K. Mahata, V. Nizet, and M. Sen. 2018. Wnt5A signaling promotes defense against bacterial pathogens by activating a host autophagy circuit. Frontiers in immunology 9: 679. (PMID: 10.3389/fimmu.2018.00679)
Che, C., C. Li, J. Lin, J. Zhang, N. Jiang, K. Yuan, and G. Zhao. 2018. Wnt5a contributes to dectin-1 and LOX-1 induced host inflammatory response signature in Aspergillus fumigatus keratitis. Cellular signalling 52: 103–111. (PMID: 10.1016/j.cellsig.2018.08.020)
Seki, E., D.A. Brenner, and M. Karin. 2012. A liver full of JNK: Signaling in regulation of cell function and disease pathogenesis, and clinical approaches. Gastroenterology 143: 307–320. (PMID: 10.1053/j.gastro.2012.06.004)
Torres, S., A. Baulies, N. Insausti-Urkia, C. Alarcón-Vila, R. Fucho, E. Solsona-Vilarrasa, S. Núñez, D. Robles, V. Ribas, L. Wakefield, M. Grompe, M.I. Lucena, R.J. Andrade, S. Win, T.A. Aung, N. Kaplowitz, C. García-Ruiz, and J.C. Fernández-Checa. 2019. Endoplasmic reticulum stress-induced upregulation of STARD1 promotes acetaminophen-induced acute liver failure. Gastroenterology 157: 552–568. (PMID: 10.1053/j.gastro.2019.04.023)
Willenbring, H., and M. Grompe. 2013. A therapy for liver failure found in the JNK yard. Cell 153: 283–284. (PMID: 10.1016/j.cell.2013.03.033)
Ji, X.F., X.Y. Li, Y.C. Fan, Z.H. Zhao, S. Gao, F.K. Sun, J. Zhao, and K. Wang. 2015. Serum wnt5a is a predictor for the prognosis of acute on chronic hepatitis B liver failure. Biomarkers : Biochemical indicators of exposure, response, and susceptibility to chemicals 20: 26–34. (PMID: 10.3109/1354750X.2014.986196)
Antoniades, C.G., P.A. Berry, J.A. Wendon, and D. Vergani. 2008. The importance of immune dysfunction in determining outcome in acute liver failure. Journal of hepatology 49: 845–861. (PMID: 10.1016/j.jhep.2008.08.009)
Rutherford, A., and R.T. Chung. 2008. Acute liver failure: Mechanisms of hepatocyte injury and regeneration. Seminars in liver disease 28: 167–174. (PMID: 10.1055/s-2008-1073116)
Sen, M., K. Lauterbach, H. El-Gabalawy, G.S. Firestein, M. Corr, and D.A. Carson. 2000. Expression and function of wingless and frizzled homologs in rheumatoid arthritis. Proceedings of the National Academy of Sciences of the United States of America 97: 2791–2796. (PMID: 10.1073/pnas.050574297)
Baarsma, H.A., W. Skronska-Wasek, K. Mutze, F. Ciolek, D.E. Wagner, G. John-Schuster, K. Heinzelmann, A. Günther, K.R. Bracke, M. Dagouassat, J. Boczkowski, G.G. Brusselle, R. Smits, O. Eickelberg, A. Yildirim, and M. Königshoff. 2017. Noncanonical WNT-5A signaling impairs endogenous lung repair in COPD. The Journal of experimental medicine 214: 143–163. (PMID: 10.1084/jem.20160675)
Bodmer, D., S. Levine-Wilkinson, A. Richmond, S. Hirsh, and R. Kuruvilla. 2009. Wnt5a mediates nerve growth factor-dependent axonal branching and growth in developing sympathetic neurons. The Journal of neuroscience : The official journal of the Society for Neuroscience 29: 7569–7581. (PMID: 10.1523/JNEUROSCI.1445-09.2009)
Baarsma, H.A., M. Königshoff, and R. Gosens. 2013. The WNT signaling pathway from ligand secretion to gene transcription: Molecular mechanisms and pharmacological targets. Pharmacology & therapeutics 138: 66–83. (PMID: 10.1016/j.pharmthera.2013.01.002)
Tang, X., Y. Wu, T.Y. Belenkaya, Q. Huang, L. Ray, J. Qu, and X. Lin. 2012. Roles of N-glycosylation and lipidation in Wg secretion and signaling. Developmental biology 364: 32–41. (PMID: 10.1016/j.ydbio.2012.01.009)
Li, P., Y. Cao, Y. Li, L. Zhou, X. Liu, and M. Geng. 2014. Expression of Wnt-5a and β-catenin in primary hepatocellular carcinoma. International journal of clinical and experimental pathology 7: 3190–3195. (PMID: 250317394097247)
Jenei, V., V. Sherwood, J. Howlin, R. Linnskog, A. Säfholm, L. Axelsson, and T. Andersson. 2009. A t-butyloxycarbonyl-modified Wnt5a-derived hexapeptide functions as a potent antagonist of Wnt5a-dependent melanoma cell invasion. Proceedings of the National Academy of Sciences of the United States of America 106: 19473–19478. (PMID: 10.1073/pnas.0909409106)
Li, X., J. Wen, Y. Dong, Q. Zhang, J. Guan, F. Liu, T. Zhou, Z. Li, Y. Fan, and N. Wang. 2021. Wnt5a promotes renal tubular inflammation in diabetic nephropathy by binding to CD146 through noncanonical Wnt signaling. Cell death & disease 12: 92. (PMID: 10.1038/s41419-020-03377-x)
Kikuchi, A., H. Yamamoto, A. Sato, and S. Matsumoto. 2012. Wnt5a: Its signalling, functions and implication in diseases. Acta physiologica (Oxford, England) 204: 17–33. (PMID: 10.1111/j.1748-1716.2011.02294.x)
Sun, M., W. Wang, L. Min, C. Chen, Q. Li, and W. Weng. 2021. Secreted frizzled-related protein 5 (SFRP5) protects ATDC5 cells against LPS-induced inflammation and apoptosis via inhibiting Wnt5a/JNK pathway. Journal of orthopaedic surgery and research 16: 129. (PMID: 10.1186/s13018-021-02260-5)
Yu, T., D. Dong, J. Guan, J. Sun, M. Guo, and Q. Wang. 2020. Alprostadil attenuates LPS-induced cardiomyocyte injury by inhibiting the Wnt5a/JNK/NF-κB pathway. Herz 45: 130–138. (PMID: 10.1007/s00059-019-4837-0)
Guha, M., and N. Mackman. 2001. LPS induction of gene expression in human monocytes. Cellular signalling 13: 85–94. (PMID: 10.1016/S0898-6568(00)00149-2)
Lou, G., A. Li, Y. Cen, Q. Yang, T. Zhang, J. Qi, Z. Chen, and Y. Liu. 2021. Selonsertib, a potential drug for liver failure therapy by rescuing the mitochondrial dysfunction of macrophage via ASK1-JNK-DRP1 pathway. Cell & bioscience 11: 9. (PMID: 10.1186/s13578-020-00525-w)
Henderson, N.C., K.J. Pollock, J. Frew, A.C. Mackinnon, R.A. Flavell, R.J. Davis, T. Sethi, and K.J. Simpson. 2007. Critical role of c-jun (NH2) terminal kinase in paracetamol-induced acute liver failure. Gut 56: 982–990. (PMID: 10.1136/gut.2006.104372)
Khan, R., and S. Koppe. 2018. Modern management of acute liver failure. Gastroenterology Clinics of North America 47: 313–326. (PMID: 10.1016/j.gtc.2018.01.005)
Reuben, A., H. Tillman, R.J. Fontana, T. Davern, B. McGuire, R.T. Stravitz, V. Durkalski, A.M. Larson, I. Liou, O. Fix, M. Schilsky, T. McCashland, J.E. Hay, N. Murray, O.S. Shaikh, D. Ganger, A. Zaman, S.B. Han, R.T. Chung, A. Smith, R. Brown, J. Crippin, M.E. Harrison, D. Koch, S. Munoz, K.R. Reddy, L. Rossaro, R. Satyanarayana, T. Hassanein, A.J. Hanje, J. Olson, R. Subramanian, C. Karvellas, B. Hameed, A.H. Sherker, P. Robuck, and W.M. Lee. 2016. Outcomes in adults with acute liver failure between 1998 and 2013: An observational cohort study. Annals of Internal Medicine 164: 724–732. (PMID: 10.7326/M15-2211)
Yamaguchi, T.P., A. Bradley, A.P. McMahon, and S. Jones. 1999. A Wnt5a pathway underlies outgrowth of multiple structures in the vertebrate embryo. Development (Cambridge, England) 126: 1211–1223. (PMID: 10.1242/dev.126.6.1211)
Grant Information:
ZR2019PH104 Innovative Research Group Project of the National Natural Science Foundation of China; 81970522 National Natural Science Foundation of China; 2020QNQT11 Shandong University multidisciplinary research and innovation team of young scholars; 2020M672074 China Postdoctoral Science Foundation; QDKY2017QN13 Scientific Research Foundation of Qilu Hospital of Shandong University (Qingdao); tsqn202103169 the Young Taishan Scholars
Contributed Indexing:
Keywords: Acute liver failure; Macrophage; Wnt5a; c-Jun N-terminal kinase
Substance Nomenclature:
0 (Cytokines)
0 (Lipopolysaccharides)
0 (Tumor Necrosis Factor-alpha)
7535-00-4 (Galactosamine)
Entry Date(s):
Date Created: 20220131 Date Completed: 20220516 Latest Revision: 20220516
Update Code:
20240104
DOI:
10.1007/s10753-022-01627-y
PMID:
35098406
Czasopismo naukowe
Acute liver failure (ALF) is a deadly clinical disorder with few effective treatments and unclear pathogenesis. In our previous study, we demonstrated that aberrant Wnt5a expression was involved in acute-on-chronic liver failure. However, the role of Wnt5a in ALF is unknown. We investigated the expression of Wnt5a and its downstream c-Jun N-terminal kinase (JNK) signaling in a mouse model of ALF established by coinjection of D-galactosamine (D-Gal) and lipopolysaccharide (LPS) in C57BL/6 mice. We also investigated the role of Box5, a Wnt5a antagonist, in vivo. Moreover, the effect of Wnt5a/JNK signaling on downstream inflammatory cytokine expression, phagocytosis, and migration in THP-1 macrophages was studied in vitro. Aberrant Wnt5a expression and JNK activation were detected in D-Gal/LPS-induced ALF mice. Box5 pretreatment reversed JNK activation and eventually decreased the mortality rate of D-Gal/LPS-treated mice, with reduced hepatic necrosis and apoptosis, serum ALT and AST levels, and liver inflammatory cytokine expression, although the latter was not significant. We further demonstrated that recombinant Wnt5a (rWnt5a)-induced tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) mRNA expression and increased THP-1 macrophage phagocytosis in a JNK-dependent manner, which could be restored by Box5. In addition, rWnt5a-induced migration of THP-1 macrophages was also reversed by Box5. Our findings suggested that Wnt5a/JNK signaling plays an important role in the development of ALF and that Box5 could have particular hepatoprotective effects in ALF.
(© 2022. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.)

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies