Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Protective Roles of Xenotropic and Polytropic Retrovirus Receptor 1 (XPR1) in Uremic Vascular Calcification.

Tytuł:
Protective Roles of Xenotropic and Polytropic Retrovirus Receptor 1 (XPR1) in Uremic Vascular Calcification.
Autorzy:
Arase H; Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-Ku, Fukuoka, 8128582, Japan.
Yamada S; Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-Ku, Fukuoka, 8128582, Japan.
Torisu K; Department of Integrated Therapy for Chronic Kidney Disease, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-Ku, Fukuoka, 8128582, Japan.
Tokumoto M; Department of Internal Medicine, Fukuoka Dental College, 2-15-1 Tamura, Sawara-Ku, Fukuoka, 8140193, Japan.
Taniguchi M; Fukuoka Renal Clinic, 4-6-20 Watanabe-Dori, Chuo-Ku, Fukuoka, 8100004, Japan.
Tsuruya K; Department of Nephrology, Nara Medical University, 840 Shijo-Cho, Kashihara, Nara, 6348521, Japan.
Nakano T; Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-Ku, Fukuoka, 8128582, Japan. .
Kitazono T; Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-Ku, Fukuoka, 8128582, Japan.
Źródło:
Calcified tissue international [Calcif Tissue Int] 2022 Jun; Vol. 110 (6), pp. 685-697. Date of Electronic Publication: 2022 Feb 02.
Typ publikacji:
Journal Article; Research Support, Non-U.S. Gov't
Język:
English
Imprint Name(s):
Publication: New York Ny : Springer Verlag
Original Publication: Berlin, New York, Springer International.
MeSH Terms:
Renal Insufficiency, Chronic*/metabolism
Renal Insufficiency, Chronic*/pathology
Vascular Calcification*/metabolism
Xenotropic and Polytropic Retrovirus Receptor*/metabolism
Animals ; Female ; Male ; Mice ; Mice, Inbred C57BL ; Myocytes, Smooth Muscle ; Phosphates/metabolism ; RNA, Messenger/metabolism
References:
London GM, Guerin AP, Marchais SJ, Metivier F, Pannier B, Adda H (2003) Arterial media calcification in end-stage renal disease: impact on all-cause and cardiovascular mortality. Nephrol Dial Transplant 18(9):1731–1740. https://doi.org/10.1093/ndt/gfg414. (PMID: 10.1093/ndt/gfg41412937218)
Blacher J, Guerin AP, Pannier B, Marchais SJ, London GM (2001) Arterial calcifications, arterial stiffness, and cardiovascular risk in end-stage renal disease. Hypertension 38(4):938–942. https://doi.org/10.1161/hy1001.096358. (PMID: 10.1161/hy1001.09635811641313)
Adragao T, Pires A, Lucas C, Birne R, Magalhaes L, Gonçalves M, Negrao AP (2004) A simple vascular calcification score predicts cardiovascular risk in haemodialysis patients. Nephrol Dial Transplant 19(6):1480–1488. https://doi.org/10.1093/ndt/gfh217. (PMID: 10.1093/ndt/gfh21715034154)
Giachelli CM (2003) Vascular calcification: in vitro evidence for the role of inorganic phosphate. J Am Soc Nephrol 14(9 Suppl 4):S300–S304. https://doi.org/10.1097/01.asn.0000081663.52165.66. (PMID: 10.1097/01.asn.0000081663.52165.6612939385)
Lau WL, Linnes M, Chu EY, Foster BL, Bartley BA, Somerman MJ, Giachelli CM (2013) High phosphate feeding promotes mineral and bone abnormalities in mice with chronic kidney disease. Nephrol Dial Transplant 28(1):62–69. https://doi.org/10.1093/ndt/gfs333. (PMID: 10.1093/ndt/gfs33323045434)
Cozzolino M, Staniforth ME, Liapis H, Finch J, Burke SK, Dusso AS, Slatopolsky E (2003) Sevelamer hydrochloride attenuates kidney and cardiovascular calcifications in long-term experimental uremia. Kidney Int 64(5):1653–1661. https://doi.org/10.1046/j.1523-1755.2003.00284.x. (PMID: 10.1046/j.1523-1755.2003.00284.x14531797)
Adeney KL, Siscovick DS, Ix JH, Seliger SL, Shlipak MG, Jenny NS, Kestenbaum BR (2009) Association of serum phosphate with vascular and valvular calcification in moderate CKD. J Am Soc Nephrol 20(2):381–387. https://doi.org/10.1681/ASN.2008040349. (PMID: 10.1681/ASN.2008040349190738262637048)
Opdebeeck B, Maudsley S, Azmi A, Maré AD, Leger WD, Meijers B, Verhulst A et al (2019) Indoxyl sulfate and p-cresyl sulfate promote vascular calcification and associate with glucose intolerance. J Am Soc Nephrol 30(5):751–766. https://doi.org/10.1681/ASN.2018060609. (PMID: 10.1681/ASN.2018060609309406516493976)
He X, Jiang H, Gao F, Liang S, Wei M, Chen L (2019) Indoxyl sulfate-induced calcification of vascular smooth muscle cells via the PI3K/Akt/NF-κB signaling pathway. Microsc Res Tech 82(12):2000–2006. https://doi.org/10.1002/jemt.23369. (PMID: 10.1002/jemt.2336931448474)
Hu MC, Shi M, Zhang J, Quinones H, Griffith C, Kuro-o M, Moe OW (2011) Klotho deficiency causes vascular calcification in chronic kidney disease. J Am Soc Nephrol 22(1):124–136. https://doi.org/10.1681/ASN.2009121311. (PMID: 10.1681/ASN.2009121311211156133014041)
O’Neill WC, Lomashvili KA, Malluche HH, Faugere MC, Riser BL (2011) Treatment with pyrophosphate inhibits uremic vascular calcification. Kidney Int 79(5):512–517. https://doi.org/10.1038/ki.2010.461. (PMID: 10.1038/ki.2010.46121124302)
Bennett BJ, Scatena M, Kirk EA, Rattazzi M, Varon RM, Averill M, Schwartz SM et al (2006) Osteoprotegerin inactivation accelerates advanced atherosclerotic lesion progression and calcification in older ApoE-/- mice. Arterioscler Thromb Vasc Biol 26(9):2117–2124. https://doi.org/10.1161/01.ATV.0000236428.91125.e6. (PMID: 10.1161/01.ATV.0000236428.91125.e616840715)
Yamada S, Tokumoto M, Tsuruya K, Tatsumoto N, Noguchi H, Kitazono T, Ooboshi H (2015) Fetuin-A decrease induced by a low-protein diet enhances vascular calcification in uremic rats with hyperphosphatemia. Am J Physiol Renal Physiol 309(8):744–754. https://doi.org/10.1152/ajprenal.00017.2015. (PMID: 10.1152/ajprenal.00017.2015)
Yamada S, Tokumoto M, Tatsumoto N, Taniguchi M, Noguchi H, Nakano T, Masutani K et al (2014) Phosphate overload directly induces systemic inflammation and malnutrition as well as vascular calcification in uremia. Am J Physiol Renal Physiol 306(12):1418–1428. https://doi.org/10.1152/ajprenal.00633.2013. (PMID: 10.1152/ajprenal.00633.2013)
Yamada S, Taniguchi M, Tokumoto M, Toyonaga J, Fujisaki K, Suehiro T, Noguchi H et al (2012) The antioxidant tempol ameliorates arterial medial calcification in uremic rats: important role of oxidative stress in the pathogenesis of vascular calcification in chronic kidney disease. J Bone Miner Res 27(2):474–485. https://doi.org/10.1002/jbmr.539. (PMID: 10.1002/jbmr.53921987400)
Zhao MM, Xu MJ, Cai Y, Zhao G, Guan Y, Kong W, Tang C et al (2011) Mitochondrial reactive oxygen species promote p65 nuclear translocation mediating high-phosphate-induced vascular calcification in vitro and in vivo. Kidney Int 79(10):1071–1079. https://doi.org/10.1038/ki.2011.18. (PMID: 10.1038/ki.2011.1821368742)
Carracedo M, Artiach G, Arnardottir H, Back M (2019) The resolution of inflammation through omega-3 fatty acids in atherosclerosis, intimal hyperplasia, and vascular calcification. Semin Immunopathol 41(6):757–766. https://doi.org/10.1007/s00281-019-00767-y. (PMID: 10.1007/s00281-019-00767-y316962506881483)
Sanchez-Duffhues G, Garcia de Vinuesa A, van de Pol V, Geerts ME, de Vries MR, Janson SG, van Dam H et al (2019) Inflammation induces endothelial-to-mesenchymal transition and promotes vascular calcification through downregulation of BMPR2. J Pathol 247(3):333–346. https://doi.org/10.1002/path.5193. (PMID: 10.1002/path.5193304305736590480)
Chavkin NW, Chia JJ, Crouthamel MH, Giachelli CM (2015) Phosphate uptake-independent signaling functions of the type III sodium-dependent phosphate transporter, PiT-1, in vascular smooth muscle cells. Exp Cell Res 333(1):39–48. https://doi.org/10.1016/j.yexcr.2015.02.002. (PMID: 10.1016/j.yexcr.2015.02.002256847114387109)
Yamada S, Leaf EM, Chia JJ, Cox TC, Speer MY, Giachelli CM (2018) PiT-2, a type III sodium-dependent phosphate transporter, protects against vascular calcification in mice with chronic kidney disease fed a high-phosphate diet. Kidney Int 94(4):716–727. https://doi.org/10.1016/j.kint.2018.05.015. (PMID: 10.1016/j.kint.2018.05.015300418126211801)
Giovannini D, Touhami J, Charnet P, Sitbon M, Battini JL (2013) Inorganic phosphate export by the retrovirus receptor XPR1 in metazoans. Cell Rep 3(6):1866–1873. https://doi.org/10.1016/j.celrep.2013.05.035. (PMID: 10.1016/j.celrep.2013.05.03523791524)
Yao XP, Zhao M, Wang C, Guo XX, Su H, Dong EL, Chen HT et al (2017) Analysis of gene expression and functional characterization of XPR1: a pathogenic gene for primary familial brain calcification. Cell Tissue Res 370(2):267–273. https://doi.org/10.1007/s00441-017-2663-3. (PMID: 10.1007/s00441-017-2663-328766044)
Legati A, Giovannini D, Nicolas G, Lopez-Sanchez U, Quintans B, Oliveira JR, Sears RL et al (2015) Mutations in XPR1 cause primary familial brain calcification associated with altered phosphate export. Nat Genet 47(6):579–581. https://doi.org/10.1038/ng.3289. (PMID: 10.1038/ng.3289259389454516721)
Lopez-Sanchez U, Tury S, Nicolas G, Wilson MS, Jurici S, Ayrignac X, Courgnaud V et al (2020) Interplay between primary familial brain calcification-associated SLC20A2 and XPR1 phosphate transporters requires inositol polyphosphates for control of cellular phosphate homeostasis. J Biol Chem 295(28):9366–9378. https://doi.org/10.1074/jbc.RA119.011376. (PMID: 10.1074/jbc.RA119.011376323935777363132)
Luo G, Ducy P, McKee MD, Pinero GJ, Loyer E, Behringer RR, Karsenty G (1997) Spontaneous calcification of arteries and cartilage in mice lacking matrix GLA protein. Nature 386(6620):78–81. https://doi.org/10.1038/386078a0. (PMID: 10.1038/386078a09052783)
O’Young J, Liao Y, Xiao Y, Jalkanen J, Lajoie G, Karttunen M, Goldberg HA et al (2011) Matrix Gla protein inhibits ectopic calcification by a direct interaction with hydroxyapatite crystals. J Am Chem Soc 133(45):18406–18412. https://doi.org/10.1021/ja207628k. (PMID: 10.1021/ja207628k21961692)
Kawata T, Nagano N, Obi M, Miyata S, Koyama C, Kobayashi N, Wakita S et al (2008) Cinacalcet suppresses calcification of the aorta and heart in uremic rats. Kidney Int 74(10):1270–1277. https://doi.org/10.1038/ki.2008.407. (PMID: 10.1038/ki.2008.40718813289)
Ter Braake AD, Smit AE, Bos C, van Herwaarden AE, Alkema W, van Essen HW, Bravenboer N et al (2020) Magnesium prevents vascular calcification in Klotho deficiency. Kidney Int 97(3):487–501. https://doi.org/10.1016/j.kint.2019.09.034. (PMID: 10.1016/j.kint.2019.09.03431866113)
Diaz-Tocados JM, Peralta-Ramirez A, Rodriguez-Ortiz ME, Raya AI, Lopez I, Pineda C, Herencia C et al (2017) Dietary magnesium supplementation prevents and reverses vascular and soft tissue calcifications in uremic rats. Kidney Int 92(5):1084–1099. https://doi.org/10.1016/j.kint.2017.04.011. (PMID: 10.1016/j.kint.2017.04.01128760336)
Sakaguchi Y, Hamano T, Obi Y, Monden C, Oka T, Yamaguchi S, Matsui I et al (2019) A randomized trial of magnesium oxide and oral carbon absorbent for coronary artery calcification in predialysis CKD. J Am Soc Nephrol 30(6):1073–1085. https://doi.org/10.1681/ASN.2018111150. (PMID: 10.1681/ASN.2018111150310367596551769)
Li X, Gu C, Hostachy S, Sahu S, Wittwer C, Jessen HJ, Fiedler D et al (2020) Control of XPR1-dependent cellular phosphate efflux by InsP8 is an exemplar for functionally-exclusive inositol pyrophosphate signaling. Proc Natl Acad Sci USA 117(7):3568–3574. https://doi.org/10.1073/pnas.1908830117. (PMID: 10.1073/pnas.1908830117320198877035621)
Xu X, Li X, Sun H, Cao Z, Gao R, Niu T, Wang Y et al (2020) Murine placental-fetal phosphate dyshomeostasis caused by an Xpr1 deficiency accelerates placental calcification and restricts fetal growth in late gestation. J Bone Miner Res 35(1):116–129. https://doi.org/10.1073/pnas.1908830117. (PMID: 10.1073/pnas.190883011731498925)
Kuro-o M (2013) A phosphate-centric paradigm for pathophysiology and therapy of chronic kidney disease. Kidney Int Supple 3(5):420–426. https://doi.org/10.1038/kisup.2013.88. (PMID: 10.1038/kisup.2013.88)
Ter Braake AD, Eelderink C, Zeper LW, Pasch A, Bakker SJL, de Borst MH, Hoenderop JGJ et al (2020) Calciprotein particle inhibition explains magnesium-mediated protection against vascular calcification. Nephrol Dial Transplant 35(5):765–773. https://doi.org/10.1093/ndt/gfz190. (PMID: 10.1093/ndt/gfz19031605492)
Sakaguchi Y, Hamano T, Matsui I, Oka T, Yamaguchi S, Kubota K, Shimada K et al (2019) Low magnesium diet aggravates phosphate-induced kidney injury. Nephrol Dial Transplant 34(8):1310–1319. https://doi.org/10.1093/ndt/gfy358. (PMID: 10.1093/ndt/gfy35830535376)
Omede F, Zhang S, Johnson C, Daniel E, Zhang Y, Fields TA, Boulanger J et al (2020) Dietary phosphate restriction attenuates polycystic kidney disease in mice. Am J Physiol Renal Physiol 318(1):35–42. https://doi.org/10.1152/ajprenal.00282.2019. (PMID: 10.1152/ajprenal.00282.2019)
Damment S, Secker R, Shen V, Lorenzo V, Rodriguez M (2011) Long-term treatment with lanthanum carbonate reduces mineral and bone abnormalities in rats with chronic renal failure. Nephrol Dial Transplant 26(6):1803–1812. https://doi.org/10.1093/ndt/gfq682. (PMID: 10.1093/ndt/gfq68221098011)
Shuvy M, Abedat S, Eliaz R, Abu-Rmeileh I, Abu-Snieneh A, Ben-Dov IZ, Meir K et al (2019) Hyperphosphatemia is required for initiation but not propagation of kidney failure-induced calcific aortic valve disease. Am J Physiol Heart Circ Physiol 317(4):695–704. https://doi.org/10.1152/ajpheart.00765.2018. (PMID: 10.1152/ajpheart.00765.2018)
Tani T, Orimo H, Shimizu A, Tsuruoka S (2017) Development of a novel chronic kidney disease mouse model to evaluate the progression of hyperphosphatemia and associated mineral bone disease. Sci Rep 7(1):2233. https://doi.org/10.1038/s41598-017-02351-6. (PMID: 10.1038/s41598-017-02351-6285335415440375)
Yoshida T, Yamashita M, Horimai C, Hayashi M (2017) Smooth muscle-selective nuclear factor-κB inhibition reduces phosphate-induced arterial medial calcification in mice with chronic kidney disease. J Am Heart Assoc 6(11):e007248. https://doi.org/10.1161/JAHA.117.00724. (PMID: 10.1161/JAHA.117.00724291466115721793)
Van TV, Watari E, Taketani Y, Kitamura T, Shiota A, Tanaka T, Tanimura A et al (2012) Dietary phosphate restriction ameliorates endothelial dysfunction in adenine-induced kidney disease rats. J Clin Biochem Nutr 51(1):27–32. https://doi.org/10.3164/jcbn.11-96. (PMID: 10.3164/jcbn.11-96227987093391860)
Dos Santos IF, Sheriff S, Amlal S, Ahmed RPH, Thakar CV, Amlal H (2019) Adenine acts in the kidney as a signaling factor and causes salt- and water-losing nephropathy: early mechanism of adenine-induced renal injury. Am J Physiol Renal Physiol 316(4):743–757. https://doi.org/10.1152/ajprenal.00142.2018. (PMID: 10.1152/ajprenal.00142.2018)
Mace ML, Olgaard K, Lewin E (2020) New aspects of the kidney in the regulation of fibroblast growth factor 23 (FGF23) and mineral homeostasis. Int J Mol Sci 21(22):8810. https://doi.org/10.3390/ijms21228810. (PMID: 10.3390/ijms212288107699902)
Edmonston D, Wolf M (2020) FGF23 at the crossroads of phosphate, iron economy and erythropoiesis. Nat Rev Nephrol 16(1):7–19. https://doi.org/10.1038/s41581-019-0189-5. (PMID: 10.1038/s41581-019-0189-531519999)
Contributed Indexing:
Keywords: Mouse model; Phosphate transporter; Vascular calcification; Vascular smooth muscle cell; XPR1
Substance Nomenclature:
0 (Phosphates)
0 (RNA, Messenger)
0 (Xenotropic and Polytropic Retrovirus Receptor)
0 (Xpr1 protein, mouse)
Entry Date(s):
Date Created: 20220203 Date Completed: 20220517 Latest Revision: 20220615
Update Code:
20240104
DOI:
10.1007/s00223-022-00947-3
PMID:
35112184
Czasopismo naukowe
Cellular phosphate transporters play critical roles in the pathogenesis of vascular calcification (VC) in chronic kidney disease (CKD). However, the mechanistic link between VC and xenotropic and polytropic receptor 1 (XPR1), a newly identified phosphate exporter, remains unknown. We developed a new mouse model with rapidly progressive uremic VC in C57BL/6 mice and examined the roles of XPR1. The combination of surgical heminephrectomy and 8 weeks of feeding a customized warfarin and adenine-based diet induced extensive aortic VC in almost all mice. The XPR1 mRNA level in the aorta of CKD mice was significantly lower than those in control mice as early as week 2, when there was no apparent VC, which progressively declined thereafter. Dietary phosphate restriction increased XPR1 mRNA expression in the aorta but reduced aortic VC in CKD mice. In cultured vascular smooth muscle cells (VSMCs), a calcifying medium supplemented with high phosphate and calcium did not affect XPR1 mRNA expression. The XPR1 mRNA expression in cultured VCMCs was also unaffected by administration of indoxyl sulfate or calcitriol deficiency but was decreased by 1-34 parathyroid hormone or fibroblast growth factor 23 supplementation. Furthermore, XPR1 deletion in the cultured VSMCs exacerbated calcification of the extracellular matrix as well as the osteogenic phenotypic switch under the condition of calcifying medium. Our data suggest that XPR1 plays protective roles in the pathogenesis of VC and its decrease in the aorta may contribute to the progression of VC in CKD.
(© 2022. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.)

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies