Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Antimicrobial resistance and virulence genes in Salmonella enterica serovars isolated from droppings of layer chicken in two farms in Nigeria.

Tytuł:
Antimicrobial resistance and virulence genes in Salmonella enterica serovars isolated from droppings of layer chicken in two farms in Nigeria.
Autorzy:
Shittu OB; Department of Microbiology, Federal University of Agriculture, Abeokuta, Ogun State, Nigeria.
Uzairue LI; Department of Microbiology, Federal University of Agriculture, Abeokuta, Ogun State, Nigeria.; International Foundation Against Infectious Disease in Nigeria (IFAIN), Abuja, Nigeria.; Department of Medical Laboratory Sciences, Federal University Oye Ekiti, Oye, Ekiti, Nigeria.
Ojo OE; Department of Veterinary Microbiology and Parasitology, Federal University of Agriculture, Abeokuta, Nigeria.
Obuotor TM; Department of Microbiology, Federal University of Agriculture, Abeokuta, Ogun State, Nigeria.
Folorunso JB; Department of Microbiology, Federal University of Agriculture, Abeokuta, Ogun State, Nigeria.; Department of Community Medicine, Olabisi Onabanjo Teaching Hospital, Ago-Iwoye, Nigeria.
Raheem-Ademola RR; Department of Community Medicine, Olabisi Onabanjo Teaching Hospital, Ago-Iwoye, Nigeria.
Olanipekun G; International Foundation Against Infectious Disease in Nigeria (IFAIN), Abuja, Nigeria.
Ajose T; International Foundation Against Infectious Disease in Nigeria (IFAIN), Abuja, Nigeria.
Medugu N; International Foundation Against Infectious Disease in Nigeria (IFAIN), Abuja, Nigeria.; Department of Microbiology and Parasitology, National Hospital, Abuja, FCT, Nigeria.
Ebruke B; International Foundation Against Infectious Disease in Nigeria (IFAIN), Abuja, Nigeria.
Obaro SK; International Foundation Against Infectious Disease in Nigeria (IFAIN), Abuja, Nigeria.; Pediatric Infectious Division, University of Nebraska Medical Center, Omaha, Nebraska, USA.
Źródło:
Journal of applied microbiology [J Appl Microbiol] 2022 May; Vol. 132 (5), pp. 3891-3906. Date of Electronic Publication: 2022 Mar 03.
Typ publikacji:
Journal Article
Język:
English
Imprint Name(s):
Publication: 2022- : Oxford : Oxford University Press
Original Publication: Oxford : Published for the Society for Applied Bacteriology by Blackwell Science, c1997-
MeSH Terms:
Salmonella Infections, Animal*/epidemiology
Salmonella enterica*
Animals ; Anti-Bacterial Agents/pharmacology ; Chickens ; Drug Resistance, Bacterial/genetics ; Farms ; Nigeria ; Poultry ; Salmonella typhi ; Serogroup ; Virulence/genetics
References:
Abakpa, G.O., Umoh, V.J., Ameh, J.B., Yakubu, S.E., Kwaga, J.K.P. & Kamaruzaman, S. (2015) Diversity and antimicrobial resistance of Salmonella enterica isolated from fresh produce and environmental samples. Environmental Nanotechnology, Monitoring and Management, 11, 004-046.
Abdel Aziz, S.A., Abdel-Latef, G.K., Shany, S.A.S. & Rouby, S.R. (2018) Molecular detection of integron and antimicrobial resistance genes in multidrug-resistant Salmonella isolated from poultry, calves, and human in Beni-Suef governorate, Egypt. Beni-Suef University Journal of Basic and Applied Sciences, 7, 535-542.
Abdel-Maksoud, M., Abdel-Khalek, R., El-Gendy, A., Gamal, R.F., Abdelhady, H.M. & House, B.L. (2015) Genetic characterization of multidrug-resistant Salmonella enterica serotypes isolated from poultry in Cairo, Egypt. The African Journal of Laboratory Medicine, 4(1), 1-11.
Abdu, P.A. (2014) Pullorum disease and fowl typhoid. In: Abdu, P.A. (Ed.) Manual of important poultry diseases in Nigeria. Ibadan: Blackwood, pp. 47-55.
Achi, C., BaX, I. & Holmes, M. (2020) Multidrug-resistance in Salmonella species isolated from poultry in Nigeria. International Journal of Infectious Diseases, 101, 37-38.
Adagbada, A.O., Coker, A.O., Smith, S.I. & Adesida, S.A. (2014) The prevalence and plasmid profile of non-typhoidal salmonellosis in children in Lagos metropolis, South-western Nigeria. The Pan African Medical Journal, 19, 359.
Adeoye, P.A., Hasfalina, C.M., Amin, M.S.M, Thamer, A.M. and Akinbile, C.O. (2014) Environmental implication of poultry waste generation and management techniques in Minna, semi-arid region of Nigeria. Annual Research and Review in Biology 4(10), 1669-1681.
Adikwu, P., Umeh, E.U., Iheukwumere, C.C., Ogbonna, I.O., Awodi, P.S. & Obande, G.A. (2018) Variation in Salmonella typhi infection among local populations in southern Benue, Nigeria. International Journal of Enteric Pathogens, 6(4), 89-94.
Agbaje, M., Lettini, A.A., Ojo, O.E., Longo, A., Marafin, E., Antonello, K. et al. (2019) Antimicrobial resistance profiles of Salmonella serovars isolated from dressed chicken meat at slaughter in Kaduna, Nigeria. Revue d'Elevage et de Medecine Veterinaire des Pays Tropicaux, 72(4), 173-179.
Ahmed, A.O., Raji, M.A., Mamman, P.H., Kwanashie, C.N., Raufu, I.A. & Aremu, A. (2019) Salmonellosis: serotypes, prevalence and multi-drug resistant profiles of Salmonella enterica in selected poultry farms, Kwara state, north Central Nigeria. The Onderstepoort Journal of Veterinary Research, 86(1), a1667.
Akanni, K.A. & Benson, O.B. (2014) Poultry wastes management strategies and environmental implications on human health in the Ogun state of Nigeria. Advances in Economics and Business, 2(4), 164-171.
Akinyemi, K.O. and Fakorede, C.O. (2018) Antimicrobial resistance and resistance genes in Salmonella enterica serovars from Nigeria. Antimicrob res & gen50615.
Akinyemi, K.O., Oyefolu, A., Mutiu, W.B., Iwalokun, B.A., Ayeni, E.S., Ajose, S.O. et al. (2018) Typhoid fever: tracking the trend in Nigeria. The American Journal of Tropical Medicine and Hygiene, 99(3), 41-47.
Ali, D.A., Tadesse, B. & Ebabu, A. (2020) Prevalence and antibiotic resistance pattern of Salmonella isolated from caecal contents of exotic chicken in Debre Zeit and Modjo, Ethiopia, Hindawi. International Journal of Microbiology, 34(3), 1910630.
Andino, A. & Hanning, I. (2015) Salmonella enterica: survival, colonization, and virulence differences among serovars. The Scientific World Journal, 520179, 1-16.
Babatunde, S.K., Kolawole, D.O., Adedayo, M.R., Ajiboye, A.E., Ajao, A.T. & Mustapha, O.N. (2017) Prevalence and characterization of Salmonella isolates from poultry farms in Ilorin, Nigeria. Journal of life Sciences Research, 4(1), 1-4.
Bech, T.B., Johnsen, K., Dalsgaard, A., Laegdsmand, M., Jacobsen, O.H. & Jacobsen, C.S. (2010) Transport and distribution of Salmonella enterica serovar typhimurium in loamy and sandy soil monoliths with applied liquid manure. Applied and Environmental Microbiology, 76, 710-714.
Bechinger, B. & Gorr, S.U. (2017) Antimicrobial peptides: mechanisms of action and resistance. Journal of Dental Research, 96, 34565-34260.
Ben Hassena, A., Barkallah, M., Fendri, I., Grosset, N., Ben Neila, I., Gautier, M. et al. (2015) Real-time PCR gene profiling and detection of Salmonella using a novel target: the sii A gene. Journal of Microbiological Methods, 11, 018-015.
Bennett, S.D., Sodha, S.V., Ayers, T.L., Lynch, M.F., Gould, L.H. & Tauxe, R.V. (2018) Produce-associated foodborne disease outbreaks, USA, 1998-2013. Epidemiology and Infection, 146, 1397-1406.
Berghaus, R.D., Thayer, S.G., Law, B.F., Mild, R.M., Hofacre, C.L. & Singer, R.S. (2013) Enumeration of Salmonella and campylobacter spp. in environmental farm samples and processing plant carcass rinses from commercial broiler chicken flocks. Applied and Environmental Microbiology, 79, 4106-4114.
Bertelloni, F., Tosi, G., Massi, P., Fiorentini, L., Parigi, M., Cerri, D. et al. (2017) Some pathogenic characters of paratyphoid Salmonella enterica strains isolated from poultry. Asian Pacific Journal of Tropical Biomedicine, 10(12), 1161-1166.
Bie, L., Fang, M., Li, Z., Wang, M. & Xu, H. (2018) Identification and characterization of new resistance-conferring SGI1s (Salmonella Genomic Island 1) in Proteus mirabilis. Frontiers in Microbiology, 9, 3172.
Bolton, D.J., Ivory, C. & McDowell, D. (2013) A study of Salmonella in pigs from birth to carcass: serotypes, genotypes, antibiotic resistance and virulence profiles. International Journal of Food Microbiology, 11, 001-303.
Brisabois, A., Cazin, I., Breuil, J. & Collatz, E. (2017) Surveillance of antibiotic resistance in salmonella. Eurosurveillance, 2, 19-20.
Bugarel, M., Granier, S.A., Weill, F.X., Fach, P. & Brisabois, A. (2011) A multiplex real-time PCR assay targeting virulence and resistance genes in Salmonella enterica serotype typhimurium. BMC Microbiology, 11(1), 151.
Byrne, M.K., Miellet, S., McGlinn, A., Fish, J., Meedya, S., Reynolds, N. et al. (2019) The drivers of antibiotic use and misuse: the development and investigation of a theory-driven community measure. BMC Public Health, 19(1), 1425. https://doi.org/10.1186/s12889-019-7796-7798.
Campbell, D., Tagg, K., Bicknese, A., McCullough, A., Chen, J., Karp, B.E. et al. (2018) Identification and characterization of Salmonella enterica serotype Newport isolates with decreased susceptibility to ciprofloxacin in the United States. JAC-Antimicrobial Resistance, 62, 00653-00618.
Cattoir, V., Weill, F.X., Poirel, L., Fabre, L., Soussy, C.J. & Nordmann, P. (2007) Prevalence of qnr genes in Salmonella in France. Journal of Infection and Chemotherapy, 59(4), 751-754.
Center for Disease Control and Prevention (CDC) (2013) Foodborne Outbreak Online Database (FOOD), Available at: http://wwwn.cdc.gov/foodborneoutbreaks/Default.aspx.
Center for Disease Control and Prevention (CDC) (2014a). Reports of selected Salmonella outbreak investigations. Centers for Disease Control and Prevention. Available at: https://www.cdc.gov/Salmonella/outbreaks.html. [Accessed 20th June 2020].
Center for Disease Control and Prevention (CDC), 2014b. Antibiotic resistance threats in the United States, 2013. Antibiotic Antimicrobial Resistance. Available at: https://www.cdc.gov/drugresistance/threat-report-2013. [Accessed 20th June 2020].
Chen, Z., Bai, J., Wang, S., Zhang, X., Zhan, Z., Shen, H. et al. (2020) Prevalence, antimicrobial resistance, virulence genes and genetic diversity of Salmonella isolated from retail duck meat in southern China. Microorganism, 8, 444.
Clinical and Laboratory Standards Institute (CLSI) (2018) Performance standards for antimicrobial susceptibility testing. 28th edition. CLSI supplement M100. Wayne, PA: Clinical and Laboratory Standards Institute.
Djeffal, S., Bakour, S., Mamache, B., Elgroud, R., Agabou, A., Chabou, S. et al. (2017) Prevalence and clonal relationship of ESBL-producing Salmonella strain from humans and poultry in northeastern Algeria. BMC Veterinary Research, 13(1), 1-9.
Doublet, B., Boyd, D.A., Mulvey, M.R. & Cloeckaert, A. (2005) The Salmonella genomic Island 1 is an integrative mobilizable element. Molecular Microbiology, 55, 1911-1924.
Eguale, T. (2018) Non-typhoidal Salmonella serovars in poultry farms in Central Ethiopia: prevalence and antimicrobial resistance. BMC Veterinary Research, 14(1), 1-8.
Eng, S.-K., Pusparajah, P., Ab Mutalib, N.-S., Ser, H.-L., Chan, K.G. & Lee, L.-H. (2015) Salmonella: A review on pathogenesis, epidemiology and antibiotic resistance. Frontiers in Life Science, 8(3), 284-293.
Fagbamila, I.O., Barco, L., Mancin, M., Kwaga, J., Ngulukun, S.S., Zavagnin, P. et al. (2017) Salmonella serovars and their distribution in Nigerian commercial chicken layer farms. PLoS One, 12(3), e0173097. https://doi.org/10.1371/journal.pone.0173097.
Fashae, K., Ogunsola, F., Aarestrup, F.M. & Hendriksen, R.S. (2010) Antimicrobial susceptibility and serovars of Salmonella from chickens and humans in Ibadan, Nigeria. Journal of Infection in Developing Countries, 4, 484-494.
García, P., Hopkins, K.L., García, V., Beutlich, J., Mendoza, M.C., Threlfall, J. et al. (2014) Diversity of plasmids encoding virulence and resistance functions in Salmonella enterica subsp. enterica serovar typhimurium monophasic variant 4,[5],12:i:- strains circulating in Europe. PLoS One, 9, e89635.
Gharieb, R.M., Tartor, Y.H. & Khedr, M.H.E. (2015) Non-typhoidal Salmonella in poultry meat and diarrhoeic patients: prevalence, antibiogram, virulotyping, molecular detection and sequencing of class I integrons in multidrug-resistant strains. Gut Pathogens, 7, 34.
Ghazaei, C. (2018) Phenotypic and molecular detection of β-lactamase genes blaTEM, blaCTX, and blaSHV produced by Salmonella spp. isolated from poultry meat. Gene, Cell and Tissue, 5(4), e84367.
Gopinath, S., Carden, S. & Monack, D. (2012) Shedding light on Salmonella carriers. Trends in Microbiology, 20(7), 320-327.
Gottapu, G.C. & Suresh, B. (2019) Multidrug resistance and ESBL profile of Salmonella serovars isolated from poultry birds and foods of animal origin. Journal of Pharmaceutical Innovation, 8(9), 277-282.
Guarddon, M., Miranda, J.M., Rodríguez, J.A., Vázquez, B.I., Cepeda, A. & Franco, C.M. (2011) Real-time polymerase chain reaction for the quantitative detection of tetA and tetB bacterial tetracycline resistance genes in food. International Journal of Food Microbiology, 146(3), 284-289.
Haruna, A. (2020) Occurrence of ESBLs producing Salmonella and coliforms in chicken and rats commercial poultry farms, Niger state, Nigeria. The International Journal of Infectious Diseases, 101, 61.
Hawkey, J., Le Hello, S., Doublet, B., Granier, S.A., Hendriksen, R.S., Fricke, W.F. et al. (2019) Global phylogenomics of multidrug-resistant Salmonella enterica serotype Kentucky ST198. Microbial Genomics, 5(7), e000269.
Hedayatianfard, K., Akhlaghi, M. & Sharifiyazdi, H. (2014) Detection of tetracycline resistance genes in bacteria isolated from fish farms using polymerase chain reaction. Veterinary Research Forum, 5(4), 269-275.
Hruby, C.E., Soupir, M.L., Moorman, T.B., Pederson, C. & Kanwar, R. (2018) Salmonella and fecal indicator bacteria survival in soils amended with poultry manure. Water, Air, and Soil Pollution, 229, 32.
Ibrahim, W.A., Abd El-Ghany, W.A., Nasef, S.A. & Hatem, M.E. (2014) A comparative study on the use of real-time polymerase chain reaction (RT-PCR) and standard isolation techniques for the detection of Salmonellae in broiler chicks. International Journal of Veterinary Science and Medicine, 2(1), 67-71.
International Typhoid Consortium, Wong, V.K., Holt, K.E., Okoro, C., Baker, S., Derek, J. et al. (2016) Molecular surveillance identifies multiple transmissions of typhoid in West Africa. PLoS Neglected Tropical Diseases, 10(9), e0004781.
Islam, M., Morgan, J., Doyle, M.P., Phatak, S.C., Millner, P. & Jiang, X. (2004) Persistence of Salmonella enterica serovar typhimurium on lettuce and parsley and in soils on which they were grown in fields treated with contaminated manure composts or irrigation water. Foodborne Pathogens and Disease, 1, 27-35.
Jackson, B.R., Griffin, P.M., Cole, D., Walsh, K.A. & Chai, S.J. (2013) Outbreak-associated Salmonella enterica serotypes and food commodities, United States, 1998-2008. Emerging Microbes and Infections, 19(8), 1239-1244.
Jacobsen, C.S. & Bech, T.B. (2012) Soil survival of Salmonella and transfer to fresh water and fresh produce. Food Research International, 45, 557-566.
Jain, P., Sudhanthirakodi, S., Chowdhury, G., Joshi, S., Anandan, S., Ray, U. et al. (2018) Antimicrobial resistance, plasmid, virulence, multilocus sequence typing and pulsed-field gel electrophoresis profiles of Salmonella enterica serovar typhimurium clinical and environmental isolates from India. PLoS One, 13(12), e0207954.
Kariuki, S. & Onsare, R.S. (2015) Epidemiology and genomics of invasive nontyphoidal Salmonella infections in Kenya. Clinical Infectious Diseases, 61, S317-S324.
Kariuki, S., Gordon, M.A., Feasey, N. & Parry, C.M. (2015) Antimicrobial resistance and management of invasive Salmonella disease. Vaccine, 33, S21-S29.
Klotchko, A. and Wallace, M.A. (2011) Salmonellosis treatment and management. Drugs, Diseases & Procedures. Available at: http://emedicine.medscape.com/article/228174-treatment. [Accessed 20th June 2019].
Kwaga, J., Abdu, P.A., Kabir, J., Ngulukun, S.S., Barco, L., Jambalang, A. et al. (2018) Investigation of potential risk factors associated with Salmonella presence in commercial laying hen farms in Nigeria. Preventive Veterinary Medicine, 152, 40-47. https://doi.org/10.1016/j.prevetmed.2018.02.001.
Le Hello, S., Harrois, D., Bouchrif, B., Sontag, L., Elhani, D., Guibert, V. et al. (2013) Highly drug-resistant Salmonella enterica serotype Kentucky ST198-X1: a microbiological study. The Lancet Infectious Diseases, 13(8), 672-679.
Le Hello, S., Hendriksen, R.S., Doublet, B., Fisher, I., Nielsen, E.M., Whichard, J.M. et al. (2011) International spread of an epidemic population of Salmonella enterica serotype Kentucky ST198 resistant to ciprofloxacin. The Journal of Infectious Diseases, 204(5), 675-684.
Levings, R.S., Djordjevic, S.P. & Hall, R.M. (2008) SGI2, a relative of Salmonella genomic Island SGI1 with an independent origin. Antimicrobial Agents and Chemotherapy, 52, 2529-2537.
Majid, A., Siddique, M. & Khan, A. (2010) Avian salmonellosis: gross and histopathological lesions. Pakistan Veterinary Journal, 20, 183-186.
Marti, E. & Balcázar, J.L. (2013) Real-time PCR assays for quantification of qnr genes in environmental water samples and chicken feces. Applied and Environmental Microbiology, 79(5), 1743-1745.
McEwen, S.A. & Collignon, P.J. (2018) Antimicrobial resistance: a one health perspective. Microbiology Spectrum, 6(2), 1-26. https://doi.org/10.1128/microbiolspec.ARBA-0009-2017.
McMillan, E.A., Gupta, S.K., Williams, L.E., Jové, T., Hiott, L.M., Woodley, T.A. et al. (2019) Antimicrobial resistance genes, cassettes, and plasmids present in Salmonella enterica associated with United States food animals. Frontiers in Microbiology, 10, 832.
Mshelbwala, F.M., Ibrahim, N.D., Saidu, S.N., Azeez, A.A., Akinduti, P.A., Kwanashie, C.N. et al. (2017) Motile Salmonella serotypes causing high mortality in poultry farms in three South-Western states of Nigeria. Veterinary Record Open, 4, e000247.
Mthembu, T.P., Zishiri, O.T. & El Zowalaty, M.E. (2019) Detection and molecular identification of Salmonella virulence genes in livestock production systems in South Africa. Pathogens, 8(3), 124.
Muhammad, M., Muhammad, L.U., Ambali, A.G., Mani, A.U., Azard, S. & Barco, L. (2010) Prevalence of Salmonella associated with chick mortality at hatching and their susceptibility to antimicrobial agents. Veterinary Microbiology, 140(1-2), 131-135.
Musa, J.A., Bello, H.S., Kwoji, I.D., John, B. & Hamidu, E.A. (2019) Occurrence of Salmonella and their antimicrobial susceptibility pattern associated with poultry accessories in Maiduguri, Nigeria. Asian Journal of Bio Science, 12, 307-312.
Mutai, W.C., Muigai, A.W.T., Waiyaki, P. & Kariuki, S. (2018) Multi-drug resistant Salmonella enterica serovar typhi isolates with reduced susceptibility to ciprofloxacin in Kenya. BMC Microbiology, 18, 187.
Mwambete, K.D. & Stephen, W.S. (2015) Antimicrobial resistance profiles of bacteria isolated from chicken droppings in Dar Es Salaam. International Journal of Pharmacy and Pharmaceutical Sciences, 7(9), 268-271.
Nordmann, P. & Poirel, L. (2005) Emergence of plasmid-mediated resistance to quinolones in Enterobacteriaceae. The Journal of Antimicrobial Chemotherapy, 101093, 463-469.
Obaro, S.K., Hassan-Hanga, F., Olateju, E.K., Umoru, D., Lawson, L., Olanipekun, G. et al. (2015) Salmonella bacteremia among children in central and Northwest Nigeria, 2008-2015. Clinical Infectious Diseases, 61, 325-331.
Ogunleye, A.O., Ajuwape, A.T.P. & Adetosoye, A.I. (2006) Pathogenicity of Salmonella Paratyphi A in pullets. Revue d'Élevage et de Médecine Vétérinaire des Pays Tropicaux, 59, 5-9.
Oldham, A.L., Drilling, H.S., Stamps, B.W., Steven, B.S. & Duncan, K.E. (2012) Automated DNA extraction platforms offer solutions to challenges of assessing microbial biofouling in oil production facilities. AMB Express, 2(1), 60.
Orji, M.U., Onuigbo, H.C. & Mbata, T.I. (2004) Isolation of Salmonella from poultry droppings and other environmental sources in Awka, Nigeria. International Journal of Infectious Diseases, 9(2), 86-89.
Osman, N. & Waheed, D. (2017) Virulence associated genes and antibiotic resistance profiles in Salmonella species isolated from chickens. International Journal of Poultry Science, 16, 303-309.
Partridge, S.R., Kwong, S.M., Firth, N. & Jensen, S.O. (2018) Mobile genetic elements associated with antimicrobial resistance. Clinical Microbiology Reviews, 31, e88-e17.
Popoff, M. Y., Bockemühl, J., Brenner, F. W., and Gheesling, L.L. (2001) Supplement 2000 (no. 44) to the Kauffmann-White scheme. Research in Microbiology 152(10), 907-909.
Pribul, B.R., Festivo, M.L., de Souza, M.M.S. & dos Prazeres Rodrigues, D. (2016) Characterization of quinolone resistance in Salmonella spp. isolates from food products and human samples in Brazil. Brazilian Journal of Microbiology, 47(1), 196-201.
Raufu, I., Bortolaia, V., Svendsen, C.A., Ameh, J.A., Ambali1, A.G. & Aarestrup, F.M. (2013) The first attempt of an active integrated laboratory-based Salmonella surveillance program in the north-eastern region of Nigeria. Journal of Applied Microbiology, 115, 1059-1067.
Retamal, P., Fresno, M., Dougnac, C., Gutierrez, S., Gornall, V., Vidal, R. et al. (2015) Genetic and phenotypic evidence of the Salmonella enterica serotype enteritidis human-animal interface in Chile. Frontiers in Microbiology, 6, 464.
Ricke, S.C., Dawoud, T.M., Shi, Z., Kaldhone, P. & Kwon, Y.M. (2018) Foodborne Salmonella in laying hens and egg production. Food and feed safety systems and analysis, 153-171.
Roberts, M.C. (2005) Update on acquired tetracycline resistance genes. FEMS Microbiology Letters, 245, 195-203.
Roschanski, N., Fischer, J., Guerra, B. & Roesler, U. (2014) Development of a real-time multiplex PCR for the rapid detection of the predominant beta-lactamase genes CTX-M, SHV, TEM, and CIT-type AmpCs in Enterobacteriaceae. PLoS One, 9(7), e100956.
Rotchell, D. & Paul, D. (2016) Multiple antibiotic resistance index. fitness and virulence potential in respiratory Pseudomonas aeruginosa from Jamaica. Journal of Medical Microbiology, 65, 251-271.
Rotger, R. & Casadesús, J. (1999) The virulence plasmids of salmonella. International Microbiology, 2, 177-184.
Rychlik, I., Karasova, D., Sebkova, A., Volf, J., Sisak, F., Havlickova, H. et al. (2009) Virulence potential of five major pathogenicity islands (SPI-1 to SPI-5) of Salmonella enterica serovar enteritidis for chickens. BMC Microbiology, 9, 268.
Salem, R.B., Abbassi, M.S., GarcÃa, V., GarcÃa-Fierro, R., Fernández, J., Kilani, H. et al. (2017) Antimicrobial drug resistance and genetic properties of Salmonella enterica serotype enteritidis circulating in chicken farms in Tunisia. Journal of Infection and Public Health, 10(6), 855-860.
Sati, N.M., Emennaa, P.E., Okolocha, E.C., Kabir, J., Kazeem, H.M., Muhammad, M. et al. (2020) Sources of Salmonella infections in selected poultry farms in Jos, Northern Nigeria. Journal of Advances in Microbiology, 19(3), 1-6.
Sattar, S., Hassan, M.M., Islam, S.K.M.A., Alam, M., Faruk, M.S.A., Chowdhury, S. et al. (2014) Antibiotic residues in broiler and layer meat in Chittagong district of Bangladesh. Veterinary World, 7, 738-743.
Schmidt, H. & Hensel, M. (2004) Pathogenicity islands in bacterial pathogenesis. Clinical Microbiology Reviews, 17, 14-56. https://doi.org/10.1128/CMR.17.1.14-56.2004.
Shahid, M., Singh, A., Sobia, F., Rashid, M., Malik, A., Shukla, I. et al. (2011) BlaCTX-M, blaTEM, and blaSHVin Enterobacteriaceae from north-Indian tertiary hospital: high occurrence of combination genes. Asian Pacific Journal of Tropical Medicine, 4, 101-105.
Shivaprasad, H.L and Barrow, P. (2008) Salmonella infections: pullorum disease and fowl typhoid. In: Saif, Y.M., Fadly, A.M., Glisson, J.R., McDougald, L.R., Nolan, L.K. and Swayne, D.E. (Eds.) Diseases of poultry, 12th edition. pp. 302-345. Athens, GA: Blackwell Publishing.
Shivaprasad, H.L. (2016) Fowl typhoid and pullorum disease. Revue Scientifique et Technique de l’OIE, 19(2), 405-424.
Silva, C., Puente, J.-L. & Calva, E. (2017) Salmonella virulence plasmid: pathogenesis and ecology. Pathogens and Disease, 75(6), 1-6.
Singh, P. & Mustapha, A. (2013) Multiplex TaqMan® detection of pathogenic and multi-drug resistant salmonella. International Journal of Food Microbiology, 166(2), 213-218.
Sjölund-Karlsson, M., Howie, R., Rickert, R., Newton, A., Gonzalez-Aviles, G. & Crump, J.A. (2015) Plasmid-mediated quinolone resistance in isolates of Salmonella enterica serotype typhi, USA. International Journal of Antimicrobial Agents, 45, 88-90.
Smith, I., Anejo-Okopi, J., Audu, O., Isa, S., Iornenge, J. & Fagbamila, I. (2017) Isolation and polymerase chain reaction detection of virulence invA gene in Salmonella spp. from poultry farms in Jos, Nigeria. Journal of Tropical Medicine, 18(2), 98.
Smith, S.I., Seriki, A. & Ajayi, A. (2016) Typhoidal and non-typhoidal Salmonella infections in Africa. European Journal of Clinical Microbiology and Infectious Diseases, 35(12), 1913-1922.
Tran-Dien, A., Le Hello, S., Bouchier, C. & Weill, F.X. (2018) Early transmissible ampicillin resistance in zoonotic Salmonella enterica serotype typhimurium in the late 1950s: a retrospective, whole-genome sequencing study. The Lancet Infectious Diseases, 18, 207-214.
Unc, A. & Goss, M.J. (2004) Transport of bacteria from manure and protection of water resources. Applied Soil Ecology, 25, 1-18.
United States Environmental Protection Agency (USEPA). (2013) Review of contaminants in livestock and poultry manure and implications for water quality. Washington, DC: Environmental Protect Agency.
United States Food and Drug Administration (USFDA) (2008) Environmental sampling and detection of Salmonella in poultry houses. Available at: https://www.fda.gov/food/laboratory-methods-food/environmental-sampling-and-detection-Salmonella-poultry-houses. [Accessed 15th June 2019].
Van Overbeek, L.S., van Doorn, J., Wichers, J., van Amerongen, A., van Roermund, H.J.W. & Willemsen, P.T.J. (2014) The arable ecosystem as battleground for emergence of new pathogens. Frontiers in Microbiology, 5, 104.
Vien, L.T.M., Minh, N.N.Q., Thuong, T.C., Khuong, H.D., Nga, T.V.T., Thompson, C. et al. (2012) The co-selection of fluoroquinolone resistance genes in the gut flora of Vietnamese children. PLoS One, 7(8), e42919.
von Wintersdorff, C.J., Penders, J., van Niekerk, J.M., Mills, N.D., Majumder, S., van Alphen, L.B. et al. (2016) Dissemination of antimicrobial resistance in microbial ecosystems through horizontal gene transfer. Frontiers in Microbiology, 7, 173.
World Health Organization (WHO). (2012) Animal waste, water quality and human health. In: Dufour, A., Bartram, J., Bos, R. & Gannon, V. (Eds.) . IWA Publishing.
World Health Organization (WHO) (2014) Antimicrobial resistance: global report on surveillance. WHO Report. Available at: http://doi.org/1.4.2014. [Accessed 15th June 2019].
Wu, H., Wang, M., Liu, Y., Wang, X., Wang, Y., Lu, J. et al. (2016) Characterization of antimicrobial resistance in Klebsiella species isolated from chicken broilers. International Journal of Food Microbiology, 06, 001-102.
Zhang, L., Fu, Y., Xiong, Z., Ma, Y., Wei, Y., Qu, X. et al. (2018) Highly prevalent multidrug-resistant Salmonella from chicken and pork meat at retail markets in Guangdong, China. Frontiers in Microbiology, 9, 2104.
Zishiri, O.T., Mkhize, N. & Mukaratirwa, S. (2016) Prevalence of virulence and antimicrobial resistance genes in Salmonella spp. isolated from commercial chickens and human clinical isolates from South Africa and Brazil. The Onderstepoort Journal of Veterinary Research, 83(1), a1067.
Contributed Indexing:
Keywords: salmonella enterica; Nigeria; antimicrobial resistance genes; poultry-droppings; salmonella typhi; virulence genes
Substance Nomenclature:
0 (Anti-Bacterial Agents)
Entry Date(s):
Date Created: 20220207 Date Completed: 20220415 Latest Revision: 20220415
Update Code:
20240104
DOI:
10.1111/jam.15477
PMID:
35129256
Czasopismo naukowe
Aim: This study aimed to investigate the isolation rate, antibiotic resistance and virulence genes of Salmonella enterica serovar from two commercial farms in Nigeria.
Methods and Results: Salmonella isolation was performed according to the United States Food and Drug Agency (USFDA) method. Serotyping, antimicrobial susceptibility testing, detection of resistance and virulence genes were done using the Kauffman-White Scheme, disc diffusion, minimum inhibitory concentration and real-time polymerase chain reaction techniques. Salmonella serovars were isolated from only farm A at 22/50 (44.0%) while none were isolated from farm B. Salmonella Typhi, 9 (40.9%); Salmonella Typhimurium, 2 (9.1%), Salmonella Enteritidis, 2 (9.1%), Salmonella Pullorum, 1 (4.5%), Salmonella Kentucky, 4 (18.2%) were identified while 4 (18.2%) were untypable. Sixteen isolates (72.7%) showed multiple drug resistance and 17 different resistance profile types with AMP-CHL-TRM-SXT as the most prevalent pattern. Resistance genes (blaTEM, 12/22 (54.5%) and virulence genes (InvA, sopB, mgtC and spi4D, 22/22 (100.0%), ssaQ, 16/22 (72.7%) and spvC, 13/22 (59.1%) were found, while blaSHV, blaCTX-M, floR, tetA, tetB, tetG and LJSGI-1 genes were absent.
Conclusion: Pathogenic Salmonella were isolated from the chicken droppings in this study. Most of these strains were resistant to antibiotics and possessed characteristics of virulence.
Significance and Impact of the Study: Chicken droppings from this study area contained pathogenic strains of Salmonella and a rare occurrence of Salmonella Typhi. The study revealed that the environment and the food chain could be at risk of contamination of highly virulent and antimicrobial-resistant strains of Salmonella. These could affect the profitability of the poultry industry and food consumption. There is a need for caution in indiscriminate disposal of poultry waste and the use of uncomposted chicken droppings in soil amendment.
(© 2022 Society for Applied Microbiology.)

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies