Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Versioning biological cells for trustworthy cell engineering.

Tytuł:
Versioning biological cells for trustworthy cell engineering.
Autorzy:
Tellechea-Luzardo J; Interdisciplinary Computing and Complex Biosystems (ICOS) Research Group, Newcastle University, Newcastle Upon Tyne, NE4 5TG, UK.
Hobbs L; Interdisciplinary Computing and Complex Biosystems (ICOS) Research Group, Newcastle University, Newcastle Upon Tyne, NE4 5TG, UK.
Velázquez E; Systems and Synthetic Biology Department, Centro Nacional de Biotecnología (CNB-CSIC), 28049, Madrid, Spain.
Pelechova L; Interdisciplinary Computing and Complex Biosystems (ICOS) Research Group, Newcastle University, Newcastle Upon Tyne, NE4 5TG, UK.
Woods S; Policy Ethics and Life Sciences (PEALS), Newcastle University, Newcastle Upon Tyne, NE1 7RU, UK.
de Lorenzo V; Systems and Synthetic Biology Department, Centro Nacional de Biotecnología (CNB-CSIC), 28049, Madrid, Spain.
Krasnogor N; Interdisciplinary Computing and Complex Biosystems (ICOS) Research Group, Newcastle University, Newcastle Upon Tyne, NE4 5TG, UK. .
Źródło:
Nature communications [Nat Commun] 2022 Feb 09; Vol. 13 (1), pp. 765. Date of Electronic Publication: 2022 Feb 09.
Typ publikacji:
Journal Article; Research Support, Non-U.S. Gov't
Język:
English
Imprint Name(s):
Original Publication: [London] : Nature Pub. Group
MeSH Terms:
Biological Products*
Cell Engineering/*methods
Animals ; Automation ; Bacteria/genetics ; Bacteria/metabolism ; Biotechnology ; Cell Line ; Genetic Engineering/methods ; Humans ; Metabolic Engineering ; Synthetic Biology/methods
References:
Jinek, M. et al. A programmable dual-RNA–guided DNA endonuclease in adaptive bacterial immunity. Science 337, 816–821 (2012). (PMID: 22745249628614810.1126/science.1225829)
Mehlenbacher, R. D., Kolbl, R., Lay, A. & Dionne, J. A. Nanomaterials for in vivo imaging of mechanical forces and electrical fields. Nat. Rev. Mater. 3, 17080 (2017). (PMID: 10.1038/natrevmats.2017.80)
Farhadi, A., Sigmund, F., Westmeyer, G. G. & Shapiro, M. G. Genetically encodable materials for non-invasive biological imaging. Nat. Mater. 20, 585–592 (2021). (PMID: 3352687910.1038/s41563-020-00883-3)
Gilbert, C. et al. Living materials with programmable functionalities grown from engineered microbial co-cultures. Nat. Mater. 20, 691–700 (2021). (PMID: 3343214010.1038/s41563-020-00857-5)
de Lorenzo, V. et al. The power of synthetic biology for bioproduction, remediation and pollution control. EMBO Rep. 19, e45658 (2018). (PMID: 29581172589140310.15252/embr.201745658)
Yim, S. S. et al. Robust direct digital-to-biological data storage in living cells. Nat. Chem. Biol. 17, 246–253 (2021). (PMID: 33432236790463210.1038/s41589-020-00711-4)
Morrison, C. & Lähteenmäki, R. Public biotech in 2017—the numbers. Nat. Publ. Gr. 36, 576–584 (2018).
Voigt, C. A. Synthetic biology 2020–2030: six commercially-available products that are changing our world. Nat. Commun. 11, 6379 (2020). (PMID: 33311504773342010.1038/s41467-020-20122-2)
Zhou, P. et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature 579, 270–273 (2020). (PMID: 32015507709541810.1038/s41586-020-2012-7)
Anzalone, A. V. et al. Search-and-replace genome editing without double-strand breaks or donor DNA. Nature 576, 149–157 (2019). (PMID: 31634902690707410.1038/s41586-019-1711-4)
Blakes, J. et al. Heuristic for maximizing DNA reuse in synthetic DNA library assembly. ACS Synth. Biol. 3, 529–542 (2014). (PMID: 2473037110.1021/sb400161v)
Yehezkel, T. Ben et al. Synthesis and cell-free cloning of DNA libraries using programmable microfluidics. Nucleic Acids Res. 44, e35 (2016). (PMID: 2648135410.1093/nar/gkv1087)
Reardon, S. CRISPR gene-editing creates wave of exotic model organisms. Nature 568, 441–442 (2019). (PMID: 3101569910.1038/d41586-019-01300-9)
de Lorenzo, V., Krasnogor, N. & Schmidt, M. For the sake of the bioeconomy: define what a synthetic biology chassis is! N. Biotechnol. 60, 44–51 (2021). (PMID: 3288915210.1016/j.nbt.2020.08.004)
Identity crisis. Nature 457, 935–936 (2009).
American Type Culture Collection Standards Development Organization & Workgroup ASN-0002. Cell line misidentification: the beginning of the end. Nat. Rev. Cancer 10, 441–448 (2010).
Masters, J. R. End the scandal of false cell lines. Nature 492, 186 (2012). (PMID: 2323586710.1038/492186a)
Challenges in irreproducible research. Nature collection. Nature https://www.nature.com/collections/prbfkwmwvz/ (2018).
Mehra, M. R., Desai, S. S., Ruschitzka, F. & Patel, A. N. RETRACTED: hydroxychloroquine or chloroquine with or without a macrolide for treatment of COVID-19: a multinational registry analysis. Lancet 1–10 https://doi.org/10.1016/S0140-6736(20)31180-6 (2021).
Tellechea-Luzardo, J. et al. Linking engineered cells to their digital twins: a version control system for strain engineering. ACS Synth. Biol. 9, 536–545 (2020). (PMID: 3207876810.1021/acssynbio.9b00400)
Committee, E. S. et al. Evaluation of existing guidelines for their adequacy for the microbial characterisation and environmental risk assessment of microorganisms obtained through synthetic biology. EFSA J 18, e06263 (2020).
Schmidt, M. & de Lorenzo, V. Synthetic bugs on the loose: containment options for deeply engineered (micro)organisms. Curr. Opin. Biotechnol. 38, 90–96 (2016).
Beeckman, D. S. A. & Rüdelsheim, P. Biosafety and biosecurity in containment: a regulatory overview. Front. Bioeng. Biotechnol. 8, 650 (2020). (PMID: 32719780734899410.3389/fbioe.2020.00650)
Baig, H. et al. Synthetic biology open language (SBOL) version 3.0.0. J. Integr. Bioinform. 17, 20200017 (2020).
Stovicek, V., Holkenbrink, C. & Borodina, I. CRISPR/Cas system for yeast genome engineering: advances and applications. FEMS Yeast Res. 17, fox030 (2017). (PMID: 581251410.1093/femsyr/fox030)
Tong, Y., Charusanti, P., Zhang, L., Weber, T. & Lee, S. Y. CRISPR-Cas9 based engineering of actinomycetal genomes. ACS Synth. Biol. 4, 1020–1029 (2015). (PMID: 2580697010.1021/acssynbio.5b00038)
Wijsman, M. et al. A toolkit for rapid CRISPR-SpCas9 assisted construction of hexose-transport-deficient Saccharomyces cerevisiae strains. FEMS Yeast Res. 19, foy107 (2019). (PMID: 10.1093/femsyr/foy107)
Ryan, F. J., Nakada, D. & Schneider, M. J. Is DNA replication a necessary condition for spontaneous mutation? Z. Vererbungsl. 91, 38–41 (1961).
Ryan, F. J., Okada, T. & Nagata, T. Spontaneous mutation in spheroplasts of Escherichia coli. J. Gen. Microbiol. 30, 193–199 (1963).
Loewe, L., Textor, V. & Scherer, S. High deleterious genomic mutation rate in stationary phase of Escherichia coli. Science 302, 1558–1560 (2003).
Bull, H. J., Mckenzie, G. J., Hastings, P. J. & Rosenberg, S. M. Evidence that stationary-phase hypermutation in the Escherichia coli chromosome is promoted by recombination. Genetics 154, 1427–1437 (2000). (PMID: 10747042146101510.1093/genetics/154.4.1427)
Sung, H.-M. & Yasbin, R. E. Adaptive, or stationary-phase, mutagenesis, a component of bacterial differentiation in Bacillus subtilis. J. Bacteriol. 184, 5641–5653 (2002). (PMID: 1227082213959610.1128/JB.184.20.5641-5653.2002)
Kasak, L., Hõrak, R. & Kivisaar, M. Promoter-creating mutations in Pseudomonas putida: a model system for the study of mutation in starving bacteria. Proc. Natl Acad. Sci. USA. 94, 3134–3139 (1997). (PMID: 90963582033410.1073/pnas.94.7.3134)
Steele, D. F. & Jinks-Robertson, S. An examination of adaptive reversion in Saccharomyces cerevisiae. Genetics 132, 9–21 (1992). (PMID: 1398066120513310.1093/genetics/132.1.9)
Achilli, A. et al. The exceptionally high rate of spontaneous mutations in the polymerase delta proofreading exonuclease-deficient Saccharomyces cerevisiae strain starved for adenine. BMC Genet. 5, 34 (2004).
Noble, C. et al. Daisy-chain gene drives for the alteration of local populations. Proc. Natl Acad. Sci. USA. 116, 8275–8282 (2019). (PMID: 30940750648676510.1073/pnas.1716358116)
Windbichler, N. et al. A synthetic homing endonuclease-based gene drive system in the human malaria mosquito. Nature 473, 212–215 (2011).
Murphy, M. C. et al. Open science, communal culture, and women’s participation in the movement to improve science. Proc. Natl Acad. Sci. USA. 117, 24154 LP–24124164 (2020). (PMID: 10.1073/pnas.1921320117)
Akin, H. et al. Mapping the landscape of public attitudes on synthetic biology. Bioscience 67, 290–300 (2017).
Sturgis, P. & Allum, N. Science in society: re-evaluating the deficit model of public attitudes. Public Underst. Sci. 13, 55–74 (2004). (PMID: 10.1177/0963662504042690)
Ho, S. S., Scheufele, D. A. & Corley, E. A. Making sense of policy choices: understanding the roles of value predispositions, mass media, and cognitive processing in public attitudes toward nanotechnology. J. Nanopart. Res. 12, 2703–2715 (2010). (PMID: 21170125298820910.1007/s11051-010-0038-8)
Jasanoff, S. The ‘science wars’ and American politics. In Between Understanding and Trust (eds Dierkes M. & Grote von C.) 14 (Routledge, 2000).
Yearley, S. What does science mean in the ‘public understanding of science’. (2000).
Bhattachary, D., Pascall Calitz, J. & Hunter, A. Synthetic biology dialogue. TNS-BMRB Res. Agency (2010).
Science academies, Science and Trust, Executive summary and recommendations. Summit G7 (2019).
Brossard, D. & Nisbet, M. C. Deference to scientific authority among a low information public: understanding U.S. opinion on agricultural biotechnology. Int. J. Public Opin. Res. 19, 24–52 (2007). (PMID: 10.1093/ijpor/edl003)
Baker, M. 1,500 scientists lift the lid on reproducibility. Nature 533, 452–454 (2016). (PMID: 2722510010.1038/533452a)
Fidler, F. & Wilcox, J. Reproducibility of scientific results. in The {Stanford} Encyclopedia of Philosophy (ed. Zalta, E. N.) (Metaphysics Research Lab, Stanford University, 2021).
Nosek, B. A. et al. Promoting an open research culture. Science 348, 1422 LP–1421425 (2015). (PMID: 10.1126/science.aab2374)
Research integrity: a landscape study. Commissioned by UK Research and Innovation (UKRI), Vitae in partnership with the UK Research Integrity Office (UKRIO) and the UK Reproducibility Network (UKRN). Vitae (2020).
What researchers think about the culture they work in. Wellcome Trust (2020).
Wilkinson, M. D. et al. The FAIR Guiding Principles for scientific data management and stewardship. Sci. Data 3, 160018 (2016). (PMID: 26978244479217510.1038/sdata.2016.18)
The Concordat on Open Research Data. United Kingdom Res. Innov. (2016).
Baker, M. How quality control could save your science. Nature 529, 456–458 (2016). (PMID: 2681902810.1038/529456a)
Baba, T. et al. Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: the Keio collection. Mol. Syst. Biol. 2, 2006.0008 https://doi.org/10.1038/msb4100050 (2006).
Michna, R. H. et al. SubtiWiki-a database for the model organism Bacillus subtilis that links pathway, interaction and expression information. Nucleic Acids Res. 42, D692–D698 (2014).
Karp, P. D. et al. The BioCyc collection of microbial genomes and metabolic pathways. Brief. Bioinform. 20, 1085–1093 (2017). (PMID: 678157110.1093/bib/bbx085)
Solovyev, V. & Salamov, A. Automatic annotation of microbial genomes and metagenomic sequences. In Metagenomics and its Applications in Agriculture. (ed. Robert W. Li), (2010).
Lesnik, E. A. et al. Prediction of rho-independent transcriptional terminators in Escherichia coli. Nucleic Acids Res. 29, 3583–3594 (2001). (PMID: 115228285587010.1093/nar/29.17.3583)
Molina-Henares, M. A. et al. Identification of conditionally essential genes for growth of Pseudomonas putida KT2440 on minimal medium through the screening of a genome-wide mutant library. Environ. Microbiol. 12, 1468–1485 (2010). (PMID: 20158506)
Liberati, N. T. et al. An ordered, nonredundant library of Pseudomonas aeruginosa strain PA14 transposon insertion mutants. Proc. Natl Acad. Sci. USA. 103, 2833 LP–2832838 (2006). (PMID: 10.1073/pnas.0511100103)
Poulsen, B. E. et al. Defining the core essential genome of Pseudomonas aeruginosa. Proc. Natl Acad. Sci. USA. 116, 10072 LP–10010080 (2019). (PMID: 10.1073/pnas.1900570116)
Lee, S. A. et al. General and condition-specific essential functions of Pseudomonas aeruginosa. Proc. Natl Acad. Sci. USA. 112, 5189 LP–5185194 (2015). (PMID: 10.1073/pnas.1422186112)
Velázquez, E., Lorenzo, Vde & Al-Ramahi, Y. Recombination-independent genome editing through CRISPR/Cas9-enhanced TargeTron delivery. ACS Synth. Biol. 8, 2186–2193 (2019). (PMID: 3141911110.1021/acssynbio.9b00293)
Velázquez, E., Al-Ramahi, Y., Tellechea, J., Krasnogor, N. & de Lorenzo, V. Targetron-assisted delivery of exogenous DNA sequences into Pseudomonas putida through CRISPR-aided counterselection. ACS Synth. Biol. 10, 2552–2565 (2021). (PMID: 34601868852465510.1021/acssynbio.1c00199)
Borodina, I., Krabben, P. & Nielsen, J. Genome-scale analysis of Streptomyces coelicolor A3(2) metabolism. Genome Res. 3, 820–829 (2005). (PMID: 10.1101/gr.3364705)
Dalgaard Mikkelsen, M. et al. Microbial production of indolylglucosinolate through engineering of a multi-gene pathway in a versatile yeast expression platform. Metab. Eng. 14, 104–111 (2012). (PMID: 10.1016/j.ymben.2012.01.006)
Jessop-Fabre, M. M. et al. EasyClone-MarkerFree: a vector toolkit for marker-less integration of genes into Saccharomyces cerevisiae via CRISPR-Cas9. Biotechnol. J. 11, 1110–1117 (2016). (PMID: 27166612509454710.1002/biot.201600147)
Ahmad, M., Hirz, M., Pichler, H. & Schwab, H. Protein expression in Pichia pastoris: recent achievements and perspectives for heterologous protein production. Appl. Microbiol. Biotechnol. 98, 5301–5317 (2014). (PMID: 24743983404748410.1007/s00253-014-5732-5)
Santos-Beneit, F. Genome sequencing analysis of Streptomyces coelicolor mutants that overcome the phosphate-depending vancomycin lethal effect. BMC Genomics 19, 457 (2018).
Peebo, K. & Neubauer, P. Application of continuous culture methods to recombinant protein production in microorganisms. Microorganisms 6, 56 (2018). (PMID: 616455910.3390/microorganisms6030056)
Masella, A. P., Bartram, A. K., Truszkowski, J. M., Brown, D. G. & Neufeld, J. D. PANDAseq: PAired-eND assembler for illumina sequences. BMC Bioinformatics 13, 31 (2012).
Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25, 1754–1760 (2009). (PMID: 19451168270523410.1093/bioinformatics/btp324)
Li, D. et al. A fluorescent tool set for yeast Atg proteins. Autophagy 11, 954–960 (2015). (PMID: 25998947450266410.1080/15548627.2015.1040971)
DiCarlo, J. E., Chavez, A., Dietz, S. L., Esvelt, K. M. & Church, G. M. Safeguarding CRISPR-Cas9 gene drives in yeast. Nat. Biotechnol. 33, 1250–1255 (2015). (PMID: 26571100467569010.1038/nbt.3412)
Treco, D. A. & Winston, F. Growth and manipulation of yeast. Curr. Protoc. Mol. Biol. Chapter 13, Unit 13.2 https://doi.org/10.1002/0471142727.mb1302s82 (2008).
Substance Nomenclature:
0 (Biological Products)
Entry Date(s):
Date Created: 20220210 Date Completed: 20220307 Latest Revision: 20221022
Update Code:
20240104
PubMed Central ID:
PMC8828774
DOI:
10.1038/s41467-022-28350-4
PMID:
35140226
Czasopismo naukowe
"Full-stack" biotechnology platforms for cell line (re)programming are on the horizon, thanks mostly to (a) advances in gene synthesis and editing techniques as well as (b) the growing integration of life science research with informatics, the internet of things and automation. These emerging platforms will accelerate the production and consumption of biological products. Hence, traceability, transparency, and-ultimately-trustworthiness is required from cradle to grave for engineered cell lines and their engineering processes. Here we report a cloud-based version control system for biotechnology that (a) keeps track and organizes the digital data produced during cell engineering and (b) molecularly links that data to the associated living samples. Barcoding protocols, based on standard genetic engineering methods, to molecularly link to the cloud-based version control system six species, including gram-negative and gram-positive bacteria as well as eukaryote cells, are shown. We argue that version control for cell engineering marks a significant step toward more open, reproducible, easier to trace and share, and more trustworthy engineering biology.
(© 2022. The Author(s).)

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies