Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

The power of weak ion-exchange resins assisted by amelogenin for natural remineralization of dental enamel: an in vitro study.

Tytuł:
The power of weak ion-exchange resins assisted by amelogenin for natural remineralization of dental enamel: an in vitro study.
Autorzy:
Diez-García S; GTS Research Group, Department of Chemistry, Faculty of Science, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain.
Sánchez-Martín MJ; GTS Research Group, Department of Chemistry, Faculty of Science, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain. .
Valiente M; GTS Research Group, Department of Chemistry, Faculty of Science, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain.
Źródło:
Odontology [Odontology] 2022 Jul; Vol. 110 (3), pp. 545-556. Date of Electronic Publication: 2022 Feb 11.
Typ publikacji:
Journal Article
Język:
English
Imprint Name(s):
Original Publication: Tokyo : Springer-Verlag Tokyo, c2001-
MeSH Terms:
Dental Caries*/prevention & control
Tooth Remineralization*/methods
Amelogenin/analysis ; Amelogenin/metabolism ; Amelogenin/pharmacology ; Animals ; Cattle ; Delayed-Action Preparations/analysis ; Delayed-Action Preparations/metabolism ; Dental Enamel ; Ion Exchange Resins/analysis ; Ion Exchange Resins/metabolism ; Minerals
References:
Hicks J, Catherine FG. Biological factors in dental caries: role of saliva and dental plaque in the dynamic process of demineralization and remineralization (part 1). J Clin Pediatr Dent. 2003;28:47–52. (PMID: 10.17796/jcpd.28.1.yg6m443046k50u2014604142)
Hicks J, Garcia-Godoy F, Flaitz C. Biological factors in dental caries: enamel structure and the caries process in the dynamic process of demineralization and remineralization (part 2). J Clin Pediatr Dent. 2004;28:119–24. (PMID: 10.17796/jcpd.28.2.617404w30244641114969369)
Hicks J, Catherine FG. Biological factors in dental caries: role of remineralization and fluoride in the dynamic process of demineralization and remineralization (part 3). J Clin Pediatr Dent. 2004;28:203–14. (PMID: 10.17796/jcpd.28.3.w0610427l746j34n15163148)
Wang D, Deng J, Deng X, Fang C, Zhang X, Yang P. Controlling enamel remineralization by amyloid-like amelogenin mimics. Adv Mater. 2020;32:200208.
Featherstone JD. Prevention and reversal of dental caries: role of low level fluoride. Community Dent Oral Epidemiol. 1999;27:31–40. (PMID: 10.1111/j.1600-0528.1999.tb01989.x10086924)
Yoshihara K, Nagaoka N, Nakamura A, Hara T, Hayakawa S, Yoshida Y, et al. Three-dimensional observation and analysis of remineralization in dentinal caries lesions. Sci Rep. 2020;10:4387. (PMID: 10.1038/s41598-020-61111-1321524307062784)
Carrouel F, Viennot S, Ottolenghi L, Gaillard C, Bourgeois D. Nanoparticles as anti-microbial, anti-inflammatory, and remineralizing agents in oral care cosmetics: a review of the current situation. Nanomaterials. 2020;10:140. (PMID: 10.3390/nano100101407022934)
Sandomierski M, Buchwald Z, Koczorowski W, Voelkel A. Calcium forms of zeolites A and X as fillers in dental restorative materials with remineralizing potential. Microporous Mesoporous Mater. 2020;294:109899. (PMID: 10.1016/j.micromeso.2019.109899)
Bapat RA, Chaubal TV, Dharmadhikari S, Abdulla AM, Bapat P, Alexander A, et al. Recent advances of gold nanoparticles as biomaterial in dentistry. Int J Pharm. 2020;586:119596. (PMID: 10.1016/j.ijpharm.2020.11959632622805)
Owens TS, Dansereau RJ, Sakr A. Development and evaluation of extended release bioadhesive sodium fluoride tablets. Int J Pharm. 2005;288:109–22. (PMID: 10.1016/j.ijpharm.2004.09.01715607263)
Xiao Z, Que K, Wang H, An R, Chen Z, Qiu Z, et al. Rapid biomimetic remineralization of the demineralized enamel surface using nano-particles of amorphous calcium phosphate guided by chimaeric peptides. Dent Mater. 2017;33:1217–28. (PMID: 10.1016/j.dental.2017.07.01528774431)
Bröseler F, Tietmann C, Bommer C, Drechsel T, Heinzel-Gutenbrunner M, Jepsen S. Randomised clinical trial investigating self-assembling peptide P11-4 in the treatment of early caries. Clin Oral Investig. 2020;24:123–32. (PMID: 10.1007/s00784-019-02901-431037343)
Örtengren U, Lehrkinder A, Safarloo A, Axelsson J, Lingström P. Opportunities for caries prevention using an ion-releasing coating material: a randomised clinical study. Odontology. 2021;109:358–67. (PMID: 10.1007/s10266-020-00551-732888115)
Cummins D. The development and validation of a new technology, based upon 1.5% arginine, an insoluble calcium compound and fluoride, for everyday use in the prevention and treatment of dental caries. J Dent. 2013;41:S1–11. (PMID: 10.1016/j.jdent.2010.04.00223985433)
Fan M, Yang J, Xu HHK, Weir MD, Tao S, Yu Z, et al. Remineralization effectiveness of adhesive containing amorphous calcium phosphate nanoparticles on artificial initial enamel caries in a biofilm-challenged environment. Clin Oral Investig. 2021;25:5375–90. (PMID: 10.1007/s00784-021-03846-333891172)
Rodríguez-Martínez J, Valiente M, Sánchez-Martín M. Tooth whitening: From the established treatments to novel approaches to prevent side effects. J Esthet Restor Dent. 2019;31:431–40. (PMID: 10.1111/jerd.1251931448534)
Marquillas CB, Procaccini R, Malmagro MV. Breaking the rules: tooth whitening by means of a reducing agent. Clin Oral Investig. 2019;24:2773–9. (PMID: 10.1007/s00784-019-03140-331748981)
Babot-Marquillas C, Sánchez-Martín MJ, Rodríguez-Martínez J, Estelrich J, Busquets MA, Valiente M. Flash tooth whitening: a friendly formulation based on a nanoencapsulated reductant. Colloids Surf B Biointerfaces. 2020;195:111241. (PMID: 10.1016/j.colsurfb.2020.11124132679445)
Kwon SR, Kurti SR, Oyoyo U, Li Y. Effect of various tooth whitening modalities on microhardness, surface roughness and surface morphology of the enamel. Odontology. 2015;103:274–9. (PMID: 10.1007/s10266-014-0163-424972882)
Olivan SRG, Sfalcin RA, Fernandes KPS, Ferrari RAM, Horliana ACRT, Motta LJ, et al. Preventive effect of remineralizing materials on dental erosion lesions by speckle technique: an in vitro analysis. Photodiagn Photodyn Ther. 2020;29:101655. (PMID: 10.1016/j.pdpdt.2020.101655)
Perioli L, Nocchetti M, Giannelli P, Pagano C, Bastianini M. Hydrotalcite composites for an effective fluoride buccal administration: a new technological approach. Int J Pharm. 2013;454:259–68. (PMID: 10.1016/j.ijpharm.2013.06.07023850817)
Carneiro KMM, Zhai H, Zhu L, Horst JA, Sitlin M, Nguyen M, et al. Amyloid-like ribbons of amelogenins in enamel mineralization. Sci Rep. 2016;6:23105. (PMID: 10.1038/srep23105270094194806362)
Welborn VV. Enamel synthesis explained. Proc Natl Acad Sci USA. 2020;117:21847–8. (PMID: 10.1073/pnas.2014394117)
Gil-Bona A, Bidlack FB. Tooth enamel and its dynamic protein matrix. Int J Mol Sci. 2020;21:4458. (PMID: 10.3390/ijms211244587352428)
Guentsch A, Fahmy MD, Wehrle C, Nietzsche S, Popp J, Watts DC, et al. Effect of biomimetic mineralization on enamel and dentin: a Raman and EDX analysis. Dent Mater. 2019;35:1300–7. (PMID: 10.1016/j.dental.2019.05.02531208774)
Simmer JP, Fincham AG. Molecular mechanisms of dental enamel formation. Crit Rev Oral Biol Med. 1995;6:84–108. (PMID: 10.1177/104544119500600207017548623)
Taha AA, Fleming PS, Hill RG, Patel MP. Enamel remineralization with novel bioactive glass air abrasion. J Dent Res. 2018;97:1438–44. (PMID: 10.1177/002203451879204830081719)
Widyarman AS, Udawatte NS, Theodorea CF, Apriani A, Richi M, Astoeti TE, et al. Casein phosphopeptide-amorphous calcium phosphate fluoride treatment enriches the symbiotic dental plaque microbiome in children. J Dent. 2021;106:103582. (PMID: 10.1016/j.jdent.2021.10358233450310)
Tammaro L, Vittoria V, Calarco A, Petillo O, Riccitiello F, Peluso G. Effect of layered double hydroxide intercalated with fluoride ions on the physical, biological and release properties of a dental composite resin. J Dent. 2014;42:60–7. (PMID: 10.1016/j.jdent.2013.10.01924239926)
Bijle MN, Abdalla MM, Ashraf U, Ekambaram M, Yiu CKY. Enamel remineralization potential of arginine-fluoride varnish in a multi-species bacterial pH-cycling model. J Dent. 2021;104:103528. (PMID: 10.1016/j.jdent.2020.10352833188848)
Hoxha A, Gillam DG, Agha A, Karpukhina N, Bushby AJ, Patel MP. Novel fluoride rechargeable dental composites containing MgAl and CaAl layered double hydroxide (LDH). Dent Mater. 2020;36:973–86. (PMID: 10.1016/j.dental.2020.04.01132536588)
Wei SuL, Lin DJ, Yen UJ. Novel dental resin composites containing LiAl-F layered double hydroxide (LDH) filler: fluoride release/recharge, mechanical properties, color change, and cytotoxicity. Dent Mater. 2019;35:663–72. (PMID: 10.1016/j.dental.2019.02.002)
Reis DP, Filho JDN, Rossi AL, Neves AA, Portela MB, da Silva EM. Remineralizing potential of dental composites containing silanized silica-hydroxyapatite (Si-HAp) nanoporous particles charged with sodium fluoride (NaF). J Dent. 2019;90:103211. (PMID: 10.1016/j.jdent.2019.10321131622646)
Wierichs RJ, Zelck H, Doerfer CE, Appel P, Paris S, Esteves-Oliveira M, et al. Effects of dentifrices differing in fluoride compounds on artificial enamel caries lesions in vitro. Odontology. 2017;105:36–45. (PMID: 10.1007/s10266-016-0233-x26849573)
Pendrys DG. Risk of fluorosis in a fluoridated population. Implications for the dentist and hygienist. J Am Dent Assoc. 1995;126:1617–24. (PMID: 10.14219/jada.archive.1995.01097499662)
Valiente M. Remineralizing material for organomineral tissues. USA patent US 6,413,498 B1. 1999.
Imazato S, Kohno T, Tsuboi R, Thongthai P, Xu HHK, Kitagawa H. Cutting-edge filler technologies to release bio-active components for restorative and preventive dentistry. Dent Mater J. 2020;39:69–79. (PMID: 10.4012/dmj.2019-35031932551)
Torrado A, Valiente M, Zhang W, Li Y, Muñoz CA. Remineralization potential of a new toothpaste formulation: an in-vitro study. J Contemp Dent Pract. 2004;5:18–30. (PMID: 10.5005/jcdp-5-1-1814973557)
Torrado A, Valiente M. Kinetics characterization of ion release under dynamic and batch conditions. I. Weak acid and weak base ion exchange resins. J Solution Chem. 2008;37:581–94. (PMID: 10.1007/s10953-008-9258-2)
Li L, Mao C, Wang J, Xu X, Pan H, Deng Y, et al. Bio-inspired enamel repair via glu-directed assembly of apatite nanoparticles: an approach to biomaterials with optimal characteristics. Adv Mater. 2011;23:4695–701. (PMID: 10.1002/adma.20110277321915920)
Jágr M, Ergang P, Pataridis S, Kolrosová M, Bartoš M, Mikšík I. Proteomic analysis of dentin–enamel junction and adjacent protein-containing enamel matrix layer of healthy human molar teeth. Eur J Oral Sci. 2019;127:112–21. (PMID: 10.1111/eos.1259430466169)
Alkilzy M, Tarabaih A, Santamaria RM, Splieth CH. Self-assembling peptide P11–4 and fluoride for regenerating enamel. J Dent Res. 2018;97:148–54. (PMID: 10.1177/002203451773053128892645)
Bai Y, Yu Z, Ackerman L, Zhang Y, Bonde J, Li W, et al. Protein nanoribbons template enamel mineralization. Proc Natl Acad Sci USA. 2020;117:19201–8. (PMID: 10.1073/pnas.2007838117327371627431033)
Sharma V, Srinivasan A, Roychoudhury A, Rani K, Tyagi M, Dev K, et al. Characterization of protein extracts from different types of human teeth and insight in biomineralization. Sci Rep. 2019;9:9314. (PMID: 10.1038/s41598-019-44268-2312493166597790)
Cao Y, Liu W, Ning T, Mei ML, Li QL, Lo ECM, et al. A novel oligopeptide simulating dentine matrix protein 1 for biomimetic mineralization of dentine. Clin Oral Investig. 2014;18:873–81. (PMID: 10.1007/s00784-013-1035-y23912147)
Fan M, Zhang M, Xu HHK, Tao S, Yu Z, Yang J, et al. Remineralization effectiveness of the PAMAM dendrimer with different terminal groups on artificial initial enamel caries in vitro. Dent Mater. 2020;36:210–20. (PMID: 10.1016/j.dental.2019.11.01531785833)
Gibson CW. The amelogenin proteins and enamel development in humans and mice. J Oral Biosci. 2011;53:248–56. (PMID: 10.1016/S1349-0079(11)80008-3222159513247901)
Li D, Lv X, Tu H, Zhou X, Yu H, Zhang L. Remineralization of initial enamel caries in vitro using a novel peptide based on amelogenin. Front Mater Sci. 2015;9:293–302. (PMID: 10.1007/s11706-015-0298-4)
Fan YW, Sun Z, Wang R, Abbott C, Moradian-Oldak J. Enamel inspired nanocomposite fabrication through amelogenin supramolecular assembly. Biomaterials. 2007;28:3034–42. (PMID: 10.1016/j.biomaterials.2007.02.016173823811995434)
Fan Y, Sun Z, Moradian-Oldak J. Controlled remineralization of enamel in the presence of amelogenin and fluoride. Biomaterials. 2009;30:478–83. (PMID: 10.1016/j.biomaterials.2008.10.01918996587)
Fan Y, Nelson JR, Alvarez JR, Hagan J, Berrier A, Xu X. Amelogenin-assisted ex vivo remineralization of human enamel: effects of supersaturation degree and fluoride concentration. Acta Biomater. 2011;7:2293–302. (PMID: 10.1016/j.actbio.2011.01.028212569873074030)
Fan Y, Wen ZT, Liao S, Lallier T, Hagan JL, Twomley JT, et al. Novel amelogenin-releasing hydrogel for remineralization of enamel artificial caries. J Bioact Compat Polym. 2012;27:585–603. (PMID: 10.1177/0883911512458050233388203548329)
Kwak SY, Litman A, Margolis HC, Yamakoshi Y, Simmer JP. Biomimetic enamel regeneration mediated by leucine-rich amelogenin peptide. J Dent Res. 2017;96:524–30. (PMID: 10.1177/0022034516688659281130345453497)
Iijima M, Moradian-Oldak J. Control of apatite crystal growth in a fluoride containing amelogenin-rich matrix. Biomaterials. 2005;26:1595–603. (PMID: 10.1016/j.biomaterials.2004.05.00915522761)
Wei M, Evans JH, Bostrom T, Grondahl L. Synthesis and characterization of hydroxyapatite, fluoride-substituted hydroxyapatite and fluorapatite. J Mater Sci Mater Med. 2003;14:311–20. (PMID: 10.1023/A:102297573073015348455)
Svensson Bonde J, Bulow L. One-step purification of recombinant human amelogenin and use of amelogenin as a fusion partner. PLoS ONE. 2012;7:e33269. (PMID: 10.1371/journal.pone.0033269224426803307724)
Posada MC, Sánches CF, Gallego GJ, Vargas AP, Restrepo LF, López JD. Dientes de bovino como sustituto de dientes humanos para su uso en la odontología. Revisión de literatura CES odontol. 2006;19:63–8.
Kim IH, Son JS, Min BK, Kim YK, Kim KH, Kwon TY. A simple, sensitive and non-destructive technique for characterizing bovine dental enamel erosion: attenuated total reflection Fourier transform infrared spectroscopy. Int J Oral Sci. 2016;8:54–60. (PMID: 10.1038/ijos.2015.58270252664822184)
Nakamichi I, Iwaku M, Fusayama T. Bovine teeth as possible substitutes in the adhesion test. J Dent Res. 1983;62:1076–81. (PMID: 10.1177/002203458306201015016352757)
Yassen GH, Platt JA, Hara AT. Bovine teeth as substitute for human teeth in dental research: a review of literature. J Oral Sci. 2011;53:273–82. (PMID: 10.2334/josnusd.53.27321959653)
Olek A, Klimek L, Bottacz-Rzepkowska E. Comparative scanning electron microscope analysis of the enamel of permanent human, bovine and porcine teeth. J Vet Sci. 2020;21:e83. (PMID: 10.4142/jvs.2020.21.e83332632307710455)
Fonseca RB, Haiter-Neto F, Carlo HL, Soares CJ, Sinhoreti MAC, Puppin-Rontani RM, et al. Radiodensity and hardness of enamel and dentin of human and bovine teeth, varying bovine teeth age. Arch Oral Biol. 2008;53:1023–9. (PMID: 10.1016/j.archoralbio.2008.06.01218675389)
Fonseca RB, Haiter-Neto F, Fernandes-Neto AJ, Barbosa GAS, Soares CJ. Radiodensity of enamel and dentin of human, bovine and swine teeth. Arch Oral Biol. 2004;49:919–22. (PMID: 10.1016/j.archoralbio.2004.05.00615353248)
Groenhuis RAJ, Jongebloed WL, ten Bosch JJ. Surface roughness of acid-etched and demineralized bovine enamel measured by a laser speckle method. Caries Res. 1980;14:333–40. (PMID: 10.1159/0002604726996817)
Braly A, Darnell LA, Mann AB, Teaford MF, Weihs TP. The effect of prism orientation on the indentation testing of human molar enamel. Arch Oral Biol. 2007;52:856–60. (PMID: 10.1016/j.archoralbio.2007.03.005174490082040059)
Xu HHK, Smith DT, Jahanmir S, Romberg E, Kelly JR, Thompson VP, et al. Indentation damage and mechanical properties of human enamel and dentin. J Dent Res. 1998;77:472–80. (PMID: 10.1177/002203459807700306019496920)
Ma Y, Cohen SR, Addadi L, Weiner S. Sea urchin tooth design: An “all-calcite” polycrystalline reinforced fiber composite for grinding rocks. Adv Mater. 2008;20:1555–9. (PMID: 10.1002/adma.200702842)
Puigdomenech I. Program MEDUSA (make equilibrium diagrams using sophisticated algorithms). R Inst Technol Inorg Chem. 2010: 10644.
Abràmoff MD, Magalhães PJ, Ram SJ. Image processing with ImageJ. Biophoton Int. 2004;11:36–41.
Collins T. ImageJ for microscopy. Biotechniques. 2007;43:25–30. (PMID: 10.2144/00011251717936939)
Wu YJ, Tseng YH, Chan JCC. Morphology control of fluorapatite crystallites by citrate ions. Cryst Growth Des. 2010;10:4240–2. (PMID: 10.1021/cg100859m)
Simon P, Schwarz U, Kniep R. Hierarchical architecture and real structure in a biomimetic nano-composite of fluorapatite with gelatine: a model system for steps in dentino- and osteogenesis? J Mater Chem. 2005;15:4992–6. (PMID: 10.1039/b504977f)
Busch S, Schwarz U, Kniep R. Morphogenesis and structure of human teeth in relation to biomimetically grown fluorapatite–gelatine composites. Chem Mater. 2001;13:3260–71. (PMID: 10.1021/cm0110728)
Busch S, Dolhaine H, DuChesne A, Heinz S, Hochrein O, Laeri F, et al. Biomimetic morphogenesis of fluorapatite–gelatin composites: fractal growth, the question of intrinsic electric fields, core/shell assemblies, hollow spheres and reorganization of denatured collagen. Eur J Inorg Chem. 1999;1999:1643–53. (PMID: 10.1002/(SICI)1099-0682(199910)1999:10<1643::AID-EJIC1643>3.0.CO;2-J)
Habelitz S, Kullar A, Marshall SJ, DenBesten PK, Balooch M, Marshall GW, et al. Amelogenin-guided crystal growth on fluoroapatite glass-ceramics. J Dent Res. 2004;83:698–702. (PMID: 10.1177/15440591040830090815329375)
Jardim JJ, Pagot MA, Maltz M. Artificial enamel dental caries treated with different topical fluoride regimes: an in situ study. J Dent. 2008;36:396–401. (PMID: 10.1016/j.jdent.2008.02.01018394771)
Ruan Q, Moradian-Oldak J. Amelogenin and enamel biomimetics. J Mater Chem B. 2015;3:3112–29. (PMID: 10.1039/C5TB00163C262517234523244)
Yao S, Jin B, Liu Z, Shao C, Zhao R, Wang X, et al. Biomineralization: from material tactics to biological strategy. Adv Mater. 2017;29:1605903. (PMID: 10.1002/adma.201605903)
Wei Y, Liu S, Xiao Z, Zhao H, Luo J, Deng X, et al. Enamel repair with amorphous ceramics. Adv Mater. 2020;32:1907067. (PMID: 10.1002/adma.201907067)
Cochrane NJ, Cai F, Huq NL, Burrow MF, Reynolds EC. New approaches to enhanced remineralization of tooth enamel. J Dent Res. 2010;89:1187–97. (PMID: 10.1177/002203451037604620739698)
Walker G, Cai F, Shen P, Reynolds C, Ward B, Fone C, et al. Increased remineralization of tooth enamel by milk containing added casein phosphopeptide-amorphous calcium phosphate. J Dairy Res. 2006;73:74–8. (PMID: 10.1017/S002202990500148216433964)
Taha AA, Patel MP, Hill RG, Fleming PS. The effect of bioactive glasses on enamel remineralization: a systematic review. J Dent. 2017;67:9–17. (PMID: 10.1016/j.jdent.2017.09.00728939485)
Reynolds EC. Calcium phosphate-based remineralization systems: scientific evidence? Aust Dent J. 2008;53:268–73. (PMID: 10.1111/j.1834-7819.2008.00061.x18782374)
Srinivasan N, Kavitha M, Loganathan SC. Comparison of the remineralization potential of CPP-ACP and CPP-ACP with 900 ppm fluoride on eroded human enamel: an in situ study. Arch Oral Biol. 2010;55:541–4. (PMID: 10.1016/j.archoralbio.2010.05.00220593555)
Grant Information:
FI-2017 Agència de Gestió d'Ajuts Universitaris i de Recerca; CTM2015-65414-C2-1-R Ministerio de Economía y Competitividad
Contributed Indexing:
Keywords: Amelogenin; Controlled release system; Dental caries; Enamel remineralization; Fluorapatite
Substance Nomenclature:
0 (Amelogenin)
0 (Delayed-Action Preparations)
0 (Ion Exchange Resins)
0 (Minerals)
Entry Date(s):
Date Created: 20220211 Date Completed: 20220608 Latest Revision: 20220722
Update Code:
20240104
PubMed Central ID:
PMC9170625
DOI:
10.1007/s10266-022-00688-7
PMID:
35147809
Czasopismo naukowe
This study aims to develop an innovative dental product to remineralize dental enamel by a proper combination of ion-exchange resins as controlled release of mineral ions that form dental enamel, in the presence of amelogenin to guide the appropriate crystal growth. The novel product proposed consists of a combination of ion-exchange resins (weak acid and weak base) individually loaded with the remineralizing ions: Ca 2+ , PO 4 3- and F - , also including Zn 2+ in a minor amount as antibacterial, together with the protein amelogenin. Such cocktail provides onsite controlled release of the ions necessary for enamel remineralization due to the weak character of the resins and at the same time, a guiding tool for related crystal growth by the indicated protein. Amelogenin protein is involved in the structural development of natural enamel and takes a key role in controlling the crystal growth morphology and alignment at the enamel surface. Bovine teeth were treated by applying the resins and protein together with artificial saliva. Treated teeth were evaluated with nanoindentation, scanning electron microscopy and energy-dispersive X-ray spectroscopy. The innovative material induces the dental remineralization creating a fluorapatite layer with a hardness equivalent to sound enamel, with the appropriate alignment of corresponding nanocrystals, being the fluorapatite more acid resistant than the original mineral. Our results suggest that the new product shows potential for promoting long-term remineralization leading to the inhibition of caries and protection of dental structures.
(© 2022. The Author(s).)

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies