Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Proximity proteomics of C9orf72 dipeptide repeat proteins identifies molecular chaperones as modifiers of poly-GA aggregation.

Tytuł:
Proximity proteomics of C9orf72 dipeptide repeat proteins identifies molecular chaperones as modifiers of poly-GA aggregation.
Autorzy:
Liu F; Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA.; Department of Ophthalmology, The Second Hospital of Jilin University, Changchun, China.
Morderer D; Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA.
Wren MC; Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA.
Vettleson-Trutza SA; Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA.
Wang Y; Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA.; Department of Neurology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China.
Rabichow BE; Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA.
Salemi MR; Proteomics Core, University of California Davis, Davis, CA, USA.
Phinney BS; Proteomics Core, University of California Davis, Davis, CA, USA.
Oskarsson B; Department of Neurology, Mayo Clinic, Jacksonville, FL, USA.
Dickson DW; Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA.
Rossoll W; Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA. .
Źródło:
Acta neuropathologica communications [Acta Neuropathol Commun] 2022 Feb 14; Vol. 10 (1), pp. 22. Date of Electronic Publication: 2022 Feb 14.
Typ publikacji:
Journal Article; Research Support, N.I.H., Extramural; Research Support, Non-U.S. Gov't; Research Support, U.S. Gov't, Non-P.H.S.
Język:
English
Imprint Name(s):
Original Publication: London : BioMed Central, [2013]-
MeSH Terms:
Amyotrophic Lateral Sclerosis*
C9orf72 Protein*
Frontotemporal Dementia*
Protein Aggregation, Pathological*
Repetitive Sequences, Nucleic Acid*
Dipeptides ; HEK293 Cells ; Humans ; Molecular Chaperones ; Proteomics ; RNA
References:
Neuropathol Appl Neurobiol. 2015 Aug;41(5):601-12. (PMID: 25185840)
Nucleic Acids Res. 2015 Jan;43(Database issue):D447-52. (PMID: 25352553)
EMBO J. 2017 Jan 17;36(2):135-150. (PMID: 27753622)
Brain. 2011 Sep;134(Pt 9):2595-609. (PMID: 21856723)
Acta Neuropathol. 2020 Aug;140(2):121-142. (PMID: 32562018)
Science. 2006 Oct 6;314(5796):130-3. (PMID: 17023659)
Mol Cell Biol. 2018 Jun 14;38(13):. (PMID: 29685906)
Mol Neurodegener. 2017 Jan 14;12(1):6. (PMID: 28088213)
Cell Rep. 2017 Jun 13;19(11):2244-2256. (PMID: 28614712)
Nature. 1998 Oct 1;395(6701):451-2. (PMID: 9774100)
Neuron. 2011 Oct 20;72(2):257-68. (PMID: 21944779)
Life Sci Alliance. 2018 May 16;1(2):e201800070. (PMID: 30456350)
Hum Mol Genet. 2017 Feb 15;26(4):790-800. (PMID: 28040728)
Science. 2003 Jan 10;299(5604):256-9. (PMID: 12446870)
J Cell Biol. 2013 Apr 29;201(3):361-72. (PMID: 23629963)
iScience. 2021 Oct 14;24(11):103282. (PMID: 34755099)
Acta Neuropathol. 2019 Mar;137(3):487-500. (PMID: 30604225)
Science. 2021 Jun 25;372(6549):eabf6548. (PMID: 34739333)
BMC Genomics. 2008 Oct 16;9:488. (PMID: 18925949)
Neuron. 2016 Oct 19;92(2):383-391. (PMID: 27720481)
Brain. 2016 Dec;139(Pt 12):3202-3216. (PMID: 27797809)
Acta Neuropathol. 2015 Oct;130(4):537-55. (PMID: 26085200)
Front Mol Neurosci. 2017 Jun 21;10:177. (PMID: 28680391)
Mol Cell. 2020 Dec 3;80(5):876-891.e6. (PMID: 33217318)
J Clin Neurosci. 2009 Sep;16(9):1131-5. (PMID: 19556136)
Acta Neuropathol. 2013 Dec;126(6):881-93. (PMID: 24132570)
Bioinformatics. 2014 Sep 1;30(17):2524-6. (PMID: 24794931)
Front Cell Neurosci. 2021 Feb 18;15:637548. (PMID: 33679328)
Hum Mol Genet. 2018 Aug 1;27(15):2658-2670. (PMID: 29750243)
Mol Biol Cell. 2016 Apr 15;27(8):1188-96. (PMID: 26912792)
Cold Spring Harb Perspect Med. 2018 Apr 2;8(4):. (PMID: 28130314)
Science. 2014 Sep 5;345(6201):1139-45. (PMID: 25081482)
Biochim Biophys Acta Mol Basis Dis. 2017 Feb;1863(2):552-559. (PMID: 27913212)
J Cell Biol. 2011 Jan 10;192(1):17-27. (PMID: 21220506)
Sci Rep. 2017 Aug 22;7(1):9039. (PMID: 28831037)
Int J Mol Sci. 2020 Feb 19;21(4):. (PMID: 32093037)
Neuron. 2020 Jul 22;107(2):292-305.e6. (PMID: 32375063)
EMBO J. 2020 Apr 15;39(8):e102811. (PMID: 32175624)
Nucleic Acids Res. 2019 Jul 2;47(W1):W191-W198. (PMID: 31066453)
Front Mol Biosci. 2016 Sep 30;3:63. (PMID: 27747217)
EMBO Mol Med. 2017 Jul;9(7):859-868. (PMID: 28408402)
Sci Transl Med. 2020 Sep 2;12(559):. (PMID: 32878979)
Neuron. 2020 Sep 23;107(6):1124-1140.e11. (PMID: 32673563)
EMBO Mol Med. 2020 May 8;12(5):e10722. (PMID: 32347002)
Neuron. 2011 Oct 20;72(2):245-56. (PMID: 21944778)
Cell. 2018 Feb 8;172(4):696-705.e12. (PMID: 29398115)
Proc Natl Acad Sci U S A. 2013 Dec 17;110(51):E4968-77. (PMID: 24248382)
J Biol Chem. 2013 Jun 14;288(24):17225-37. (PMID: 23612975)
J Cell Sci. 2021 Apr 1;134(7):. (PMID: 33712450)
Neurosci Lett. 2020 Jan 18;716:134678. (PMID: 31816334)
Nat Neurosci. 2020 May;23(5):615-624. (PMID: 32284607)
Curr Opin Neurol. 2021 Oct 1;34(5):748-755. (PMID: 34392299)
Nat Methods. 2020 Dec;17(12):1229-1236. (PMID: 33257825)
Mol Cell Proteomics. 2020 May;19(5):757-773. (PMID: 32127388)
Cell Stress Chaperones. 2018 Jan;23(1):1-12. (PMID: 28608264)
Acta Neuropathol. 2014 Oct;128(4):505-24. (PMID: 25173361)
Neuron. 2020 Feb 19;105(4):645-662.e11. (PMID: 31831332)
Membranes (Basel). 2014 Sep 16;4(3):630-41. (PMID: 25230046)
Genome Res. 2003 Nov;13(11):2498-504. (PMID: 14597658)
Front Mol Biosci. 2017 Jun 13;4:39. (PMID: 28660197)
ACS Chem Neurosci. 2019 Jun 19;10(6):2629-2646. (PMID: 31017385)
Autophagy. 2021 May 31;:1-29. (PMID: 34057020)
Brain. 2016 May;139(Pt 5):1417-32. (PMID: 26936937)
Brain. 2021 Sep 17;:. (PMID: 34534264)
Neurosci Lett. 2019 Nov 20;713:134523. (PMID: 31568865)
Proc Natl Acad Sci U S A. 2014 Jun 17;111(24):E2453-61. (PMID: 24927568)
Sci Rep. 2020 May 18;10(1):8130. (PMID: 32424160)
Acta Neuropathol Commun. 2018 Jul 4;6(1):55. (PMID: 29973287)
Kaohsiung J Med Sci. 2011 Mar;27(3):102-7. (PMID: 21421198)
Mol Cell. 2010 Feb 12;37(3):355-69. (PMID: 20159555)
Hum Mol Genet. 2016 May 1;25(9):1803-13. (PMID: 26931465)
Neuron. 2013 Feb 20;77(4):639-46. (PMID: 23415312)
Exp Cell Res. 2021 Feb 15;399(2):112491. (PMID: 33460589)
Int J Mol Sci. 2019 Sep 11;20(18):. (PMID: 31514384)
Mol Cell. 2019 May 16;74(4):713-728.e6. (PMID: 30981631)
Front Mol Neurosci. 2017 Feb 13;10:35. (PMID: 28243191)
Mol Cell. 2017 Mar 16;65(6):1044-1055.e5. (PMID: 28306503)
Acta Neuropathol Commun. 2019 Mar 13;7(1):39. (PMID: 30867060)
Neuron. 2021 Jun 16;109(12):1949-1962.e6. (PMID: 33991504)
Hum Mol Genet. 2021 Jun 9;30(12):1084-1100. (PMID: 33783499)
Cell. 2016 Oct 20;167(3):774-788.e17. (PMID: 27768896)
J Cell Biol. 2012 Mar 19;196(6):801-10. (PMID: 22412018)
Curr Opin Genet Dev. 2017 Jun;44:1-8. (PMID: 28208059)
Cell. 2016 Oct 20;167(3):789-802.e12. (PMID: 27768897)
Acta Neuropathol. 2020 Jan;139(1):99-118. (PMID: 31642962)
Hum Mol Genet. 2015 Mar 15;24(6):1630-45. (PMID: 25398948)
Sci Transl Med. 2017 Mar 29;9(383):. (PMID: 28356511)
Acta Neuropathol. 2017 Aug;134(2):241-254. (PMID: 28409281)
Philos Trans R Soc Lond B Biol Sci. 2018 Jan 19;373(1738):. (PMID: 29203718)
Acta Neuropathol. 2014 Oct;128(4):485-503. (PMID: 25120191)
Nat Biotechnol. 2018 Oct;36(9):880-887. (PMID: 30125270)
Science. 2013 Mar 15;339(6125):1335-8. (PMID: 23393093)
Hum Mol Genet. 2006 Oct 15;15 Spec No 2:R182-7. (PMID: 16987882)
J Neurochem. 2016 Aug;138 Suppl 1:54-70. (PMID: 27306735)
Nat Neurosci. 2018 Feb;21(2):228-239. (PMID: 29311743)
Acta Neuropathol Commun. 2013 Oct 14;1:68. (PMID: 24252525)
Trends Mol Med. 2007 Jan;13(1):32-8. (PMID: 17127096)
Cells. 2019 Jan 10;8(1):. (PMID: 30634694)
Nat Neurosci. 2016 May;19(5):668-677. (PMID: 26998601)
Neurobiol Dis. 2020 Nov;145:105055. (PMID: 32829028)
Hum Mol Genet. 2012 Jul 1;21(13):2899-911. (PMID: 22454397)
EMBO Mol Med. 2020 Feb 7;12(2):e10919. (PMID: 31858749)
Cell Stress Chaperones. 2009 Jan;14(1):1-21. (PMID: 18686016)
Neurobiol Dis. 2021 Oct;158:105477. (PMID: 34390836)
Grant Information:
United States HHMI Howard Hughes Medical Institute; P30 AG062677 United States AG NIA NIH HHS; R33 NS110960 United States NS NINDS NIH HHS; NS084974 United States AG NIA NIH HHS; P01 NS084974 United States NS NINDS NIH HHS
Contributed Indexing:
Keywords: C9orf72; Heat shock proteins; Poly-GA; Proximity proteomics
Substance Nomenclature:
0 (C9orf72 Protein)
0 (C9orf72 protein, human)
0 (Dipeptides)
0 (Molecular Chaperones)
63231-63-0 (RNA)
Entry Date(s):
Date Created: 20220215 Date Completed: 20220307 Latest Revision: 20230330
Update Code:
20240105
PubMed Central ID:
PMC8842533
DOI:
10.1186/s40478-022-01322-x
PMID:
35164882
Czasopismo naukowe
The most common inherited cause of two genetically and clinico-pathologically overlapping neurodegenerative diseases, amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD), is the presence of expanded GGGGCC intronic hexanucleotide repeats in the C9orf72 gene. Aside from haploinsufficiency and toxic RNA foci, another non-exclusive disease mechanism is the non-canonical translation of the repeat RNA into five different dipeptide repeat proteins (DPRs), which form neuronal inclusions in affected patient brains. While evidence from cellular and animal models supports a toxic gain-of-function of pathologic poly-GA, poly-GR, and poly-PR aggregates in promoting deposition of TDP-43 pathology and neurodegeneration in affected brain areas, the relative contribution of DPRs to the disease process in c9FTD/ALS patients remains unclear. Here we have used the proximity-dependent biotin identification (BioID) proximity proteomics approach to investigate the formation and collective composition of DPR aggregates using cellular models. While interactomes of arginine rich poly-GR and poly-PR aggregates overlapped and were enriched for nucleolar and ribosomal proteins, poly-GA aggregates demonstrated a distinct association with proteasomal components, molecular chaperones (HSPA1A/HSP70, HSPA8/HSC70, VCP/p97), co-chaperones (BAG3, DNAJA1A) and other factors that regulate protein folding and degradation (SQSTM1/p62, CALR, CHIP/STUB1). Experiments in cellular models of poly-GA pathology show that molecular chaperones and co-chaperones are sequestered to the periphery of dense cytoplasmic aggregates, causing depletion from their typical cellular localization. Their involvement in the pathologic process is confirmed in autopsy brain tissue, where HSPA8, BAG3, VCP, and its adapter protein UBXN6 show a close association with poly-GA aggregates in the frontal cortex, temporal cortex, and hippocampus of c9FTLD and c9ALS cases. The association of heat shock proteins and co-chaperones with poly-GA led us to investigate their potential role in reducing its aggregation. We identified HSP40 co-chaperones of the DNAJB family as potent modifiers that increased the solubility of poly-GA, highlighting a possible novel therapeutic avenue and a central role of molecular chaperones in the pathogenesis of human C9orf72-linked diseases.
(© 2022. The Author(s).)
Zaloguj się, aby uzyskać dostęp do pełnego tekstu.

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies