Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

A predictive toolset for the identification of degradation pattern and toxic hazard estimation of multimeric hazardous compounds persists in water bodies.

Tytuł:
A predictive toolset for the identification of degradation pattern and toxic hazard estimation of multimeric hazardous compounds persists in water bodies.
Autorzy:
Singh AK; Environmental Microbiology Laboratory, Environmental Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
Bilal M; School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian 223003, China.
Barceló D; Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Jordi Girona, 18-26, 08034 Barcelona, Spain; Catalan Institute of Water Research (ICRA-CERCA), Parc Científic i Tecnològic de la Universitat de Girona, c/Emili Grahit, 101, Edifici H2O, 17003 Girona, Spain; Sustainability Cluster, School of Engineering, UPES, Dehradun, India.
Iqbal HMN; Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico. Electronic address: .
Źródło:
The Science of the total environment [Sci Total Environ] 2022 Jun 10; Vol. 824, pp. 153979. Date of Electronic Publication: 2022 Feb 16.
Typ publikacji:
Journal Article
Język:
English
Imprint Name(s):
Original Publication: Amsterdam, Elsevier.
MeSH Terms:
Aquatic Organisms*/metabolism
Lignin*/metabolism
Biodegradation, Environmental ; Water
Contributed Indexing:
Keywords: Biotransformation; Chloro-lignin; Complex technical lignin; Environmental contaminants; Toxic derivatives; Toxtree
Substance Nomenclature:
059QF0KO0R (Water)
9005-53-2 (Lignin)
Entry Date(s):
Date Created: 20220219 Date Completed: 20220414 Latest Revision: 20220414
Update Code:
20240105
DOI:
10.1016/j.scitotenv.2022.153979
PMID:
35181354
Czasopismo naukowe
An array of industrial processing units generates many multimeric hazardous compounds, such as complex technical lignin and its toxic derivatives, thereby persist in expelled water bodies. The inclusion of some group of motifs in the complex technical lignin structure helps it resist degrade biologically, most often even recalcitrant. Relatively small concentrations of lignin are harmful to aquatic organisms and can trigger environmental hazards. Sadly, the entire biotransformation pathway and insightful information about these toxic derivatives are incomplete and missing in the literature. This is mainly because the current conventional treatments often fail to identify all transformed compounds and their environmental fate. Thus, a robust toolset is much needed to cover this literature gap. Inadequate performance of conventional remediation processes and biological degradation patterns can be maximally optimized with the aid of predictive toolset methods that could offer better degradability and complete transformed compound information. A predictive toolset-assisted biodegradation pattern determination is a multifaceted and reliable analytical technique that can help to overcome existing shortcomings by providing an entire transformation pathway. Considering the above critiques, this work reports on the degradation pattern, and toxicological endpoints of five hazardous compounds, i.e., 2-chlorosyringaldehyde, 5-chlorovanillin, catechol, guaiacyl 4-O-5 guaiacyl, and syringyl β-O-4 syringyl β-O-4 sinapyl alcohol, that persists in water matrices. The predictive transformation pattern was revealed notably less complex end-products of catechol as; succinate, and 2-Oxo-4-pentenoate. The gastrointestinal (GI) absorption rate was found high for all tested compounds, excluding trimer compound, i.e., syringyl β-O-4 syringyl β-O-4 sinapyl alcohol. The toxicity and persistence profile tested via Toxtree showed that the Cramer Rules, Verhaar Scheme, and Structural Alerts for Reactivity, (START) biodegradation ability as positive, and all five target compounds were found as class-II persistent compounds. Furthermore, the Ecological Structure-Activity Relationships (ECOSAR)assisted testing specifies that all tested derivatives have multiple aquatic toxic levels. In summary, the current findings endorse the hazardous compounds and undertake prescreening of the deprivation policy to protect the environment.
Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
(Copyright © 2022 Elsevier B.V. All rights reserved.)

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies