Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Disinhibitory Circuitry Gates Associative Synaptic Plasticity in Olfactory Cortex.

Tytuł:
Disinhibitory Circuitry Gates Associative Synaptic Plasticity in Olfactory Cortex.
Autorzy:
Canto-Bustos M; Department of Neuroscience.; Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, Pennsylvania 15260.
Friason FK; Department of Neuroscience.; Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, Pennsylvania 15260.
Bassi C; Department of Neuroscience.
Oswald AM; Department of Neuroscience .; Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, Pennsylvania 15260.; Department of Neurobiology.; Neuroscience Institute, University of Chicago, Chicago, Illinois 60637.
Źródło:
The Journal of neuroscience : the official journal of the Society for Neuroscience [J Neurosci] 2022 Apr 06; Vol. 42 (14), pp. 2942-2950. Date of Electronic Publication: 2022 Feb 18.
Typ publikacji:
Journal Article
Język:
English
Imprint Name(s):
Publication: Washington, DC : Society for Neuroscience
Original Publication: [Baltimore, Md.] : The Society, c1981-
MeSH Terms:
Interneurons*/physiology
Piriform Cortex*/metabolism
Animals ; Female ; Male ; Mice ; Neural Inhibition/physiology ; Neuronal Plasticity/physiology ; Parvalbumins/metabolism ; Pyramidal Cells/physiology ; Vasoactive Intestinal Peptide/metabolism
References:
J Neurophysiol. 1999 Jun;81(6):2737-42. (PMID: 10368393)
J Neurosci. 2012 Jun 6;32(23):7970-85. (PMID: 22674272)
J Neurosci. 2007 Feb 14;27(7):1534-42. (PMID: 17301162)
Cereb Cortex. 2018 Feb 1;28(2):764-776. (PMID: 29186359)
Chem Senses. 2001 Jun;26(5):551-76. (PMID: 11418502)
Neuron. 2011 Sep 22;71(6):995-1013. (PMID: 21943598)
Neuron. 2013 Jan 9;77(1):155-67. (PMID: 23312523)
J Neurosci. 1999 Jul 1;19(13):5228-35. (PMID: 10377334)
Neuron. 2019 Jan 2;101(1):91-102.e4. (PMID: 30472077)
J Neurophysiol. 2016 Jun 1;115(6):3008-17. (PMID: 26961109)
J Neurosci. 2010 Dec 15;30(50):16796-808. (PMID: 21159951)
Cereb Cortex. 2001 Jun;11(6):485-9. (PMID: 11375909)
J Comp Neurol. 1986 Jan 22;243(4):488-509. (PMID: 3512629)
J Neurophysiol. 2002 May;87(5):2358-63. (PMID: 11976373)
Neuron. 2006 Dec 21;52(6):1097-108. (PMID: 17178411)
Neuron. 2004 Sep 30;44(1):5-21. (PMID: 15450156)
J Neurosci. 2011 Jul 20;31(29):10615-26. (PMID: 21775605)
Neuron. 2009 Jun 25;62(6):850-61. (PMID: 19555653)
Neuron. 2009 Sep 24;63(6):854-64. (PMID: 19778513)
Nat Neurosci. 2000 Nov;3 Suppl:1178-83. (PMID: 11127835)
Neurosci Lett. 2013 Jun 17;545:50-3. (PMID: 23624024)
Proc Natl Acad Sci U S A. 2016 Feb 23;113(8):2276-81. (PMID: 26858458)
Brain Res Bull. 2018 Jul;141:20-26. (PMID: 29174732)
Brain Res. 1988 Feb 16;441(1-2):281-91. (PMID: 3359237)
Front Neural Circuits. 2016 Aug 17;10:62. (PMID: 27582691)
Neurobiol Learn Mem. 2003 Nov;80(3):302-14. (PMID: 14521872)
Neuron. 2011 Oct 6;72(1):49-56. (PMID: 21982368)
Neuron. 2010 Aug 12;67(3):452-65. (PMID: 20696382)
Nat Neurosci. 2015 Apr;18(4):531-5. (PMID: 25751531)
J Neurosci. 1993 Jun;13(6):2477-82. (PMID: 8099125)
Nat Neurosci. 2017 Jan;20(1):62-71. (PMID: 27798631)
Cereb Cortex. 2015 Jan;25(1):180-91. (PMID: 23960200)
J Comp Neurol. 2005 Jul 25;488(2):224-31. (PMID: 15924345)
Cereb Cortex. 2020 Mar 21;30(2):488-504. (PMID: 31210267)
J Neurosci. 1996 Jan;16(1):307-12. (PMID: 8613796)
Nat Neurosci. 2013 Nov;16(11):1662-70. (PMID: 24097044)
J Neurosci. 2007 Jul 11;27(28):7553-8. (PMID: 17626216)
J Neurosci. 2009 Oct 28;29(43):13649-61. (PMID: 19864577)
J Comp Neurol. 2010 May 15;518(10):1670-87. (PMID: 20235162)
J Neurophysiol. 1999 May;81(5):2103-18. (PMID: 10322052)
Brain Res. 1977 Jun 24;129(1):152-7. (PMID: 68803)
J Comp Neurol. 1978 Oct 15;181(4):781-807. (PMID: 690285)
Neuron. 2011 Nov 17;72(4):506-19. (PMID: 22099455)
Neuron. 2011 Oct 6;72(1):41-8. (PMID: 21982367)
J Neurosci. 2008 Aug 27;28(35):8851-9. (PMID: 18753387)
J Neurophysiol. 1998 Nov;80(5):2467-74. (PMID: 9819256)
J Neurophysiol. 2012 Feb;107(4):1222-9. (PMID: 22131370)
Science. 2018 Sep 14;361(6407):. (PMID: 30213885)
Cereb Cortex. 2010 Dec;20(12):2971-84. (PMID: 20457693)
Front Syst Neurosci. 2013 Jan 09;6:79. (PMID: 23316142)
J Neurosci. 2016 Mar 23;36(12):3471-80. (PMID: 27013676)
Brain Res. 1990 Aug 13;525(1):175-9. (PMID: 1978790)
Cell. 2014 Mar 13;156(6):1139-1152. (PMID: 24630718)
J Neurophysiol. 2007 Jul;98(1):205-13. (PMID: 17460109)
J Comp Neurol. 2003 Mar 17;457(4):361-73. (PMID: 12561076)
Nature. 2013 Nov 28;503(7477):521-4. (PMID: 24097352)
Nat Neurosci. 2012 Mar 25;15(5):793-802. (PMID: 22446880)
Nat Neurosci. 2013 Aug;16(8):1068-76. (PMID: 23817549)
Nature. 2011 Apr 14;472(7342):213-6. (PMID: 21451525)
Brain Res Bull. 2018 Jul;141:13-19. (PMID: 29197563)
Contributed Indexing:
Keywords: circuit; cortex; inhibition; olfactory; plasticity
Substance Nomenclature:
0 (Parvalbumins)
37221-79-7 (Vasoactive Intestinal Peptide)
Entry Date(s):
Date Created: 20220219 Date Completed: 20220408 Latest Revision: 20221007
Update Code:
20240105
PubMed Central ID:
PMC8985865
DOI:
10.1523/JNEUROSCI.1369-21.2021
PMID:
35181596
Czasopismo naukowe
Inhibitory microcircuits play an essential role in regulating cortical responses to sensory stimuli. Interneurons that inhibit dendritic or somatic integration act as gatekeepers for neural activity, synaptic plasticity, and the formation of sensory representations. Conversely, interneurons that selectively inhibit other interneurons can open gates through disinhibition. In the anterior piriform cortex, relief of inhibition permits associative LTP of excitatory synapses between pyramidal neurons. However, the interneurons and circuits mediating disinhibition have not been elucidated. In this study, we use an optogenetic approach in mice of both sexes to identify the inhibitory interneurons and disinhibitory circuits that regulate LTP. We focused on three prominent interneuron classes: somatostatin (SST), parvalbumin (PV), and vasoactive intestinal polypeptide (VIP) interneurons. We find that LTP is gated by the inactivation SST or PV interneurons and by the activation of VIP interneurons. Further, VIP interneurons strongly inhibit putative SST cells during LTP induction but only weakly inhibit PV interneurons. Together, these findings suggest that VIP interneurons mediate a disinhibitory circuit that gates synaptic plasticity during the formation of olfactory representations. SIGNIFICANCE STATEMENT Inhibitory interneurons stabilize neural activity during sensory processing. However, inhibition must also be modulated to allow sensory experience shape neural responses. In olfactory cortex, inhibition regulates activity-dependent increases in excitatory synaptic strength that accompany odor learning. We identify two inhibitory interneuron classes that act as gatekeepers preventing excitatory enhancement. We demonstrate that driving a third class of interneurons inhibits the gatekeepers and opens the gate for excitatory enhancement. All three inhibitory neuron classes comprise disinhibitory microcircuit motifs found throughout the cortex. Our findings suggest that a common disinhibitory microcircuit promotes changes in synaptic strength during sensory processing and learning.
(Copyright © 2022 the authors.)
Comment in: J Neurosci. 2022 Aug 24;42(34):6484-6486. (PMID: 36002284)

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies