Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Sealing mechanism study of laryngeal mask airways via 3D modelling and finite element analysis.

Tytuł:
Sealing mechanism study of laryngeal mask airways via 3D modelling and finite element analysis.
Autorzy:
Liao H; Department of Anaesthesia, Shanghai Shibei Hospital, Shanghai, 200435, China. .
Chen L; Department of Anaesthesia, Shanghai Shibei Hospital, Shanghai, 200435, China.
Liu M; Department of Surgery, Shanghai Shibei Hospital, Shanghai, 200435, China. .
Chen J; Department of Anaesthesia, Shanghai Shibei Hospital, Shanghai, 200435, China. .
Źródło:
Scientific reports [Sci Rep] 2022 Feb 21; Vol. 12 (1), pp. 2887. Date of Electronic Publication: 2022 Feb 21.
Typ publikacji:
Journal Article; Research Support, Non-U.S. Gov't
Język:
English
Imprint Name(s):
Original Publication: London : Nature Publishing Group, copyright 2011-
MeSH Terms:
Computer Simulation*
Finite Element Analysis*
Laryngeal Masks*/adverse effects
Airway Management/*adverse effects
Airway Management/*methods
Cricoid Cartilage ; Humans ; Hyoid Bone ; Male ; Middle Aged ; Pharyngitis/etiology ; Pharynx/physiology ; Pressure
References:
Morse, Z., Sano, K., Kageyama, I. & Kanri, T. The relationship of placement accuracy and insertion times for the laryngeal mask airway to the training of inexperienced dental students. Anesth. Prog. 49, 9 (2002). (PMID: 20074082007408)
Wilson, I., Fell, D., Robinson, S. & Smith, G. Cardiovascular responses to insertion of the laryngeal mask. Anaesthesia 47, 300–302 (1992). (PMID: 10.1111/j.1365-2044.1992.tb02168.x)
Brimacombe, J. The advantages of the lma over the tracheal tube or facemask: A meta-analysis. Can. J. Anaesth. 42, 1017–1023 (1995). (PMID: 10.1007/BF03011075)
Zhu, Y. et al. Cricoid-mental distance-based versus weight-based criteria for size selection of classic laryngeal mask airway in adults: A randomized controlled stud. J. Clin. Monit. Comput. 33, 759–765 (2019). (PMID: 10.1007/s10877-019-00308-w)
Berry, A., Brimacombe, J., McManus, K. & Goldblatt, M. An evaluation of the factors influencing selection of the optimal size of laryngeal mask airway in normal adults. Anaesthesia 53, 565–570 (1998). (PMID: 10.1046/j.1365-2044.1998.00403.x)
Corda, D. M. et al. Clinical application of limiting laryngeal mask airway cuff pressures utilizing inflating syringe intrinsic recoil. Rom. J. Aesth. Intensive care 25, 11 (2018).
Waruingi, D., Mung’ayi, V., Gisore, E. & Wanyonyi, S. A randomised controlled trial of the effect of laryngeal mask airway manometry on postoperative sore throat in spontaneously breathing adult patients presenting for surgery at a university teaching hospital. Afr. Health Sci. 19, 1705–1715 (2019). (PMID: 10.4314/ahs.v19i1.47)
Chantzara, G. et al. Influence of lma cuff pressure on the incidence of pharyngolaryngeal adverse effects and evaluation of the use of manometry during different ventilation modes: A randomized clinical trial. Minerva Anestesiol. 80, 547–555 (2014).
Licina, A., Chambers, N. A., Hullett, B., Erb, T. O. & Von UNGERN-STERNBERG, B. . S. . Lower cuff pressures improve the seal of pediatric laryngeal mask airways. Pediatr. Anesth. 18, 952–956 (2008). (PMID: 10.1111/j.1460-9592.2008.02706.x)
Hockings, L., Heaney, M., Chambers, N. A., Erb, T. O. & Von UNGERN-STERNBERG, B. . S. Reduced air leakage by adjusting the cuff pressure in pediatric laryngeal mask airways during spontaneous ventilation. Pediatr. Anesth. 20, 313–317 (2010). (PMID: 10.1111/j.1460-9592.2010.03277.x)
Brimacombe, J. & Keller, C. A comparison of pharyngeal mucosal pressure and airway sealing pressure with the laryngeal mask airway in anesthetized adult patients. Anesth. Analg. 87, 1379–1382 (1998). (PMID: 10.1213/00000539-199812000-00032)
Ghabach, M. B. et al. Ventilation of nonparalyzed patients under anesthesia with laryngeal mask airway, comparison of three modes of ventilation: Volume controlled ventilation, pressure controlled ventilation, and pressure controlled ventilation-volume guarantee. Anesth. Essays Res. 11, 197 (2017). (PMID: 10.4103/0259-1162.200238)
Aoyama, K., Takenaka, I., Sata, T. & Shigematsu, A. Cricoid pressure impedes positioning and ventilation through the laryngeal mask airway. Can. J. Anaesth. 43, 1035–1040 (1996). (PMID: 10.1007/BF03011906)
Keller, C., Brimacombe, J., Keller, K. & Morris, R. Comparison of four methods for assessing airway sealing pressure with the laryngeal mask airway in adult patients. Br. J. Anaesth. 82, 286–287 (1999). (PMID: 10.1093/bja/82.2.286)
Brimacombe, J., Keller, C. & Pühringer, F. Pharyngeal mucosal pressure and perfusion: A fiberoptic evaluation of the posterior pharynx in anesthetized adult patients with a modified cuffed oropharyngeal airway. J. Am. Soc. Anesthesiol. 91, 1661 (1999). (PMID: 10.1097/00000542-199912000-00018)
Rao, S. S. The Finite Element Method in Engineering (Butterworth-Heinemann, 2017).
Cheng, Y., Li, S. & Liu, J. Abnormal deformation and negative pressure of a hard magnetic disc under the action of a magnet. Sens. Actuators A 332, 113065 (2021). (PMID: 10.1016/j.sna.2021.113065)
Toyohara, R. et al. Finite element analysis of load transition on sacroiliac joint during bipedal walking. Sci. Rep. 10, 1–10 (2020). (PMID: 10.1038/s41598-020-70676-w)
Erdemir, A., Guess, T. M., Halloran, J., Tadepalli, S. C. & Morrison, T. M. Considerations for reporting finite element analysis studies in biomechanics. J. Biomech. 45, 625–633 (2012). (PMID: 10.1016/j.jbiomech.2011.11.038)
El Bojairami, I., El-Monajjed, K. & Driscoll, M. Development and validation of a timely and representative finite element human spine model for biomechanical simulations. Sci. Rep. 10, 1–15 (2020). (PMID: 10.1038/s41598-020-77469-1)
Bolcos, P. O. et al. Comparison between kinetic and kinetic-kinematic driven knee joint finite element models. Sci. Rep. 8, 1–11 (2018). (PMID: 10.1038/s41598-018-35628-5)
Kim, H. J. et al. On coupling a lumped parameter heart model and a three-dimensional finite element aorta model. Ann. Biomed. Eng. 37, 2153–2169 (2009). (PMID: 10.1007/s10439-009-9760-8)
Pena, E., Calvo, B., Martinez, M., Palanca, D. & Doblaré, M. Finite element analysis of the effect of meniscal tears and meniscectomies on human knee biomechanics. Clin. Biomech. 20, 498–507 (2005). (PMID: 10.1016/j.clinbiomech.2005.01.009)
Wall, W. A. & Rabczuk, T. Fluid-structure interaction in lower airways of ct-based lung geometries. Int. J. Numer. Methods Fluids 57, 653–675 (2008). (PMID: 10.1002/fld.1763)
Jin, L., Cheng, Y., Zhang, K., Xue, Z. & Liu, J. Axisymmetric model of the sealing cylinder in service: Analytical solutions. J. Mech. 37, 404–414 (2021). (PMID: 10.1093/jom/ufab010)
Doyle, D. J. & Garmon, E. H. American society of anesthesiologists classification (asa class). StatPearls [Internet] (2019).
Brain, A., Verghese, C. & Strube, P. The lma ‘proseal’: A laryngeal mask with an oesophageal vent. Br. J. Anaesth. 84, 650–654 (2000). (PMID: 10.1093/bja/84.5.650)
Goodyear, M. D., Krleza-Jeric, K. & Lemmens, T. The declaration of Helsinki. BMJ 335, 624–625 (2007). (PMID: 10.1136/bmj.39339.610000.BE)
Xu, C., Brennick, M. J., Dougherty, L. & Wootton, D. M. Modeling upper airway collapse by a finite element model with regional tissue properties. Med. Eng. Phys. 31, 1343–1348 (2009). (PMID: 10.1016/j.medengphy.2009.08.006)
Huang, Y., Malhotra, A. & White, D. P. Computational simulation of human upper airway collapse using a pressure-/state-dependent model of genioglossal muscle contraction under laminar flow conditions. J. Appl. Physiol. 99, 1138–1148 (2005). (PMID: 10.1152/japplphysiol.00668.2004)
Jia, S. et al. The influence of the rib cage on the static and dynamic stability responses of the scoliotic spine. Sci. Rep. 10, 1–10 (2020). (PMID: 10.1038/s41598-019-56847-4)
Manual, A. U. Abaqus user manual. Abacus (2020).
Burgard, G., Möllhoff, T. & Prien, T. The effect of laryngeal mask cuff pressure on postoperative sore throat incidence. J. Clin. Anesth. 8, 198–201 (1996). (PMID: 10.1016/0952-8180(95)00229-4)
Hinz, J. et al. Cost analysis of two anaesthetic machines: “Primus®’’ and “zeus®’’. BMC. Res. Notes 5, 1–8 (2012). (PMID: 10.1186/1756-0500-5-3)
Entry Date(s):
Date Created: 20220222 Date Completed: 20220315 Latest Revision: 20220315
Update Code:
20240104
PubMed Central ID:
PMC8861007
DOI:
10.1038/s41598-022-06908-y
PMID:
35190622
Czasopismo naukowe
Proper sealing of laryngeal mask airways (LMAs) is critical for airway management in clinical use. Understanding the sealing mechanism can significantly help front-line anaesthetists to reduce the incidence of adverse events. However, anaesthetists, who may not have the most substantial engineering backgrounds, lack intuitive ways to develop an understanding of the LMA sealing mechanism effectively. The paper aims to study the LMA-pharynx sealing mechanisms from the perspective of front-line anaesthetists. We use a computer-aided 3D modelling technique to visualise the LMA-pharynx interactions, which helps anaesthetists identify the critical areas of complications. Furthermore, we conduct a quantitative pressure distribution analysis of the LMA-pharynx contacting surface using the finite element analysis technique, which helps further understand the sealing mechanics in those areas. We present two cases studies based on one male volunteer, aged 50, inserted with a ProSeal LMA. In the first case, a relatively low cuff pressure (CP) was applied to simulate the clinical circumstances in which complications related to air leakage are most likely to happen; in the second case, we increase the CP to a relatively high value to simulate the scenarios with an increased risk of complications related to high mucosal pressure. The experiments suggest the follows: (1) Sore throat complications related to high mucosal pressure is most likely to occur in the hypopharynx with a high CP setting, particularly in the areas where the cricoid cartilage presses the mucosa. (2) The narrow hyoid bone super horn width likely causes LMA insertion difficulties. (3) Insufficient CP will significantly increase the risk of air leakage in the oropharynx. A complete sealing pressure line in the contacting surface will be formed with sufficient CP, thereby preventing the air leakage into the oral.
(© 2022. The Author(s).)
Erratum in: Sci Rep. 2022 Mar 2;12(1):3785. (PMID: 35236917)
Zaloguj się, aby uzyskać dostęp do pełnego tekstu.

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies