Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Network pharmacology analysis and molecular docking to unveil the potential mechanisms of San-Huang-Chai-Zhu formula treating cholestasis.

Tytuł:
Network pharmacology analysis and molecular docking to unveil the potential mechanisms of San-Huang-Chai-Zhu formula treating cholestasis.
Autorzy:
Liu B; Department of Digestion, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University (Hangzhou Hospital of Traditional Chinese Medicine), Hangzhou, Zhejiang, China.
Zhang J; Department of Digestion, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University (Hangzhou Hospital of Traditional Chinese Medicine), Hangzhou, Zhejiang, China.
Shao L; Department of Digestion, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University (Hangzhou Hospital of Traditional Chinese Medicine), Hangzhou, Zhejiang, China.
Yao J; Department of Digestion, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University (Hangzhou Hospital of Traditional Chinese Medicine), Hangzhou, Zhejiang, China.
Źródło:
PloS one [PLoS One] 2022 Feb 23; Vol. 17 (2), pp. e0264398. Date of Electronic Publication: 2022 Feb 23 (Print Publication: 2022).
Typ publikacji:
Journal Article; Research Support, Non-U.S. Gov't
Język:
English
Imprint Name(s):
Original Publication: San Francisco, CA : Public Library of Science
MeSH Terms:
Molecular Docking Simulation*
Network Pharmacology*
Cholestasis/*drug therapy
Drugs, Chinese Herbal/*chemistry
Proteome/*chemistry
Drugs, Chinese Herbal/pharmacology ; Drugs, Chinese Herbal/therapeutic use ; Humans ; Protein Binding ; Proteome/metabolism
References:
Phytomedicine. 2021 Jul;87:153575. (PMID: 33984593)
Nucleic Acids Res. 2017 Jan 4;45(D1):D877-D887. (PMID: 27899610)
BMC Syst Biol. 2014;8 Suppl 4:S11. (PMID: 25521941)
Front Pharmacol. 2019 Feb 21;10:123. (PMID: 30846939)
Sci Rep. 2020 Oct 22;10(1):18128. (PMID: 33093629)
Curr Drug Metab. 2019;20(4):292-300. (PMID: 30599107)
Zhongguo Zhong Yao Za Zhi. 2021 Aug;46(16):4230-4237. (PMID: 34467737)
Front Pharmacol. 2019 Feb 19;10:109. (PMID: 30837876)
J Chem Inf Model. 2015 Nov 23;55(11):2324-37. (PMID: 26479676)
Medchemcomm. 2018 Nov 30;10(1):148-157. (PMID: 30774861)
Eur J Pharmacol. 2020 Sep 5;882:173269. (PMID: 32553811)
Nucleic Acids Res. 2016 Jan 4;44(D1):D380-4. (PMID: 26590256)
Zhongguo Zhong Yao Za Zhi. 2011 Oct;36(19):2610-4. (PMID: 22242415)
J Ethnopharmacol. 2020 Aug 10;258:112842. (PMID: 32333952)
BMC Genomics. 2016 Jun 23;17 Suppl 2:444. (PMID: 27357693)
Conf Proc IEEE Eng Med Biol Soc. 2006;2006:5531-4. (PMID: 17947148)
J Ethnopharmacol. 2021 Jan 10;264:113021. (PMID: 32479885)
Eur J Clin Invest. 2013 Oct;43(10):1069-83. (PMID: 23927644)
J Comput Aided Mol Des. 2010 May;24(5):417-22. (PMID: 20401516)
Curr Protoc Bioinformatics. 2017 Jun 27;58:1.2.1-1.2.12. (PMID: 28654725)
Front Pharmacol. 2019 Oct 09;10:1185. (PMID: 31649545)
Sci Rep. 2018 Jan 10;8(1):255. (PMID: 29321478)
Front Genet. 2018 Feb 02;9:2. (PMID: 29456550)
Zhongguo Zhong Yao Za Zhi. 2019 Jul;44(13):2662-2666. (PMID: 31359674)
World J Gastroenterol. 2020 Dec 21;26(47):7470-7484. (PMID: 33384548)
Expert Opin Pharmacother. 2014 Feb;15(3):365-72. (PMID: 24382005)
Chin Med. 2017 Dec 28;12:36. (PMID: 29299052)
Mol Biosyst. 2014 May;10(5):1014-22. (PMID: 24492828)
Evid Based Complement Alternat Med. 2018 Oct 16;2018:4050714. (PMID: 30410554)
J Pharm Biomed Anal. 2021 May 10;198:113986. (PMID: 33690095)
Front Pharmacol. 2020 Nov 23;11:573074. (PMID: 33381029)
J Comput Chem. 2010 Jan 30;31(2):455-61. (PMID: 19499576)
J Ethnopharmacol. 2020 Mar 1;249:112432. (PMID: 31790818)
Chin J Integr Med. 2020 Jan;26(1):72-80. (PMID: 30941682)
Saudi J Biol Sci. 2015 Sep;22(5):551-5. (PMID: 26288557)
J Ethnopharmacol. 2021 Apr 6;269:113706. (PMID: 33346024)
Methods Mol Biol. 2017;1607:627-641. (PMID: 28573592)
Nucleic Acids Res. 2018 Jan 4;46(D1):D1117-D1120. (PMID: 29106634)
Front Pharmacol. 2021 Jun 24;12:705498. (PMID: 34248647)
J Ethnopharmacol. 2021 Jan 10;264:113289. (PMID: 32846191)
Naunyn Schmiedebergs Arch Pharmacol. 2019 Jan;392(1):37-43. (PMID: 30203151)
Nucleic Acids Res. 2020 Jan 8;48(D1):D845-D855. (PMID: 31680165)
Biomed Res Int. 2020 Nov 9;2020:8827955. (PMID: 33274227)
Nucleic Acids Res. 2011 Jan;39(Database issue):D1055-9. (PMID: 21097881)
PLoS One. 2017 Sep 5;12(9):e0184129. (PMID: 28873455)
Zhongguo Zhong Yao Za Zhi. 2016 Mar;41(5):898-903. (PMID: 28875646)
Bioinformatics. 2016 Jan 15;32(2):309-11. (PMID: 26415722)
Nat Chem. 2012 Jan 24;4(2):90-8. (PMID: 22270643)
J Cheminform. 2014 Apr 16;6:13. (PMID: 24735618)
J Pharm Sci. 2010 Mar;99(3):1107-22. (PMID: 19852037)
Biomolecules. 2020 Aug 29;10(9):. (PMID: 32872540)
Drugs. 2021 Jul;81(10):1181-1192. (PMID: 34142342)
Biomolecules. 2019 Feb 18;9(2):. (PMID: 30781696)
BioData Min. 2020 Aug 27;13:11. (PMID: 32863886)
Substance Nomenclature:
0 (Drugs, Chinese Herbal)
0 (Proteome)
Entry Date(s):
Date Created: 20220223 Date Completed: 20220308 Latest Revision: 20220308
Update Code:
20240104
PubMed Central ID:
PMC8865668
DOI:
10.1371/journal.pone.0264398
PMID:
35196362
Czasopismo naukowe
Objective: Chinese medicine formulae possess the potential for cholestasis treatment. This study aimed to explore the underlying mechanisms of San-Huang-Chai-Zhu formula (SHCZF) against cholestasis.
Methods: The major chemical compounds of SHCZF were identified by high-performance liquid chromatography. The bioactive compounds and targets of SHCZF, and cholestasis-related targets were obtained from public databases. Intersected targets of SHCZF and cholestasis were visualized by Venn diagram. The protein-protein interaction and compound-target networks were established by Cytoscape according to the STRING database. The biological functions and pathways of potential targets were characterized by Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analysis. The biological process-target-pathway network was constructed by Cytoscape. Finally, the interactions between biological compounds and hub target proteins were validated via molecular docking.
Results: There 7 major chemical compounds in SHCZF. A total of 141 bioactive compounds and 83 potential targets were screened for SHCZF against cholestasis. The process of SHCZF against cholestasis was mainly involved in AGE-RAGE signaling pathway in diabetic complications, fluid shear stress and atherosclerosis, and drug metabolism-cytochrome P450. ALB, IL6, AKT1, TP53, TNF, MAPK3, APOE, IL1B, PPARG, and PPARA were the top 10 hub targets. Molecular docking showed that bioactive compounds of SHCZF had a good binding affinity with hub targets.
Conclusions: This study predicted that the mechanisms of SHCZF against cholestasis mainly involved in AGE-RAGE signaling pathway in diabetic complications, fluid shear stress and atherosclerosis, and drug metabolism-cytochrome P450. Moreover, APOE, AKT1, and TP53 were the critical hub targets for bioactive compounds of SHCZF.
Competing Interests: The authors have declared that no competing interests exist.
Zaloguj się, aby uzyskać dostęp do pełnego tekstu.

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies