Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Electrochemical Zero-Mode Waveguide Potential-Dependent Fluorescence of Glutathione Reductase at Single-Molecule Occupancy.

Tytuł:
Electrochemical Zero-Mode Waveguide Potential-Dependent Fluorescence of Glutathione Reductase at Single-Molecule Occupancy.
Autorzy:
Baek S; Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States.
Han D; Department of Chemistry, The Catholic University of Korea, Bucheon, Gyeonggi-do 14662, South Korea.
Kwon SR; Department of Chemistry and Research Institute of Natural Science, Gyeongsang National University, Jinju 52828, South Korea.
Sundaresan V; Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States.
Bohn PW; Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States.; Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States.
Źródło:
Analytical chemistry [Anal Chem] 2022 Mar 08; Vol. 94 (9), pp. 3970-3977. Date of Electronic Publication: 2022 Feb 25.
Typ publikacji:
Journal Article; Research Support, N.I.H., Extramural; Research Support, U.S. Gov't, Non-P.H.S.
Język:
English
Imprint Name(s):
Original Publication: Washington, American Chemical Society.
MeSH Terms:
Glutathione*
Glutathione Reductase*/chemistry
Nanotechnology*
Single Molecule Imaging*/methods
Diffusion ; Fluorescence ; Glutathione Disulfide ; Oxidation-Reduction
References:
Acc Chem Res. 2005 Dec;38(12):923-31. (PMID: 16359164)
Nano Lett. 2012 Jan 11;12(1):370-5. (PMID: 22149182)
Chem Soc Rev. 2009 Sep;38(9):2671-83. (PMID: 19690746)
Nat Nanotechnol. 2017 Dec;12(12):1169-1175. (PMID: 28892102)
Nat Commun. 2019 Dec 11;10(1):5662. (PMID: 31827096)
Nature. 2010 Apr 15;464(7291):1012-7. (PMID: 20393556)
Appl Spectrosc. 2012 Feb;66(2):163-9. (PMID: 22449279)
Annu Rev Biophys. 2012;41:269-93. (PMID: 22577821)
J Am Chem Soc. 2006 Jul 19;128(28):9028-9. (PMID: 16834364)
J Am Chem Soc. 2008 Jul 2;130(26):8241-50. (PMID: 18540603)
Biochemistry. 1998 Oct 6;37(40):13968-77. (PMID: 9760231)
Nat Chem Biol. 2006 Feb;2(2):87-94. (PMID: 16415859)
Anal Chem. 2008 Aug 1;80(15):6018-22. (PMID: 18563914)
Acc Chem Res. 2020 Apr 21;53(4):719-728. (PMID: 31990518)
Phys Chem Chem Phys. 2016 Mar 28;18(12):8512-21. (PMID: 26941212)
J Biol Chem. 1968 Feb 25;243(4):809-14. (PMID: 5638597)
Faraday Discuss. 2015;184:101-15. (PMID: 26406924)
Redox Biol. 2015 Dec;6:183-197. (PMID: 26233704)
Acc Chem Res. 2013 Feb 19;46(2):369-77. (PMID: 23270398)
J Phys D Appl Phys. 2018 May 16;51(19):193001. (PMID: 34158676)
J Am Chem Soc. 2018 Nov 21;140(46):15549-15559. (PMID: 30388887)
Science. 1998 Dec 4;282(5395):1877-82. (PMID: 9836635)
Elife. 2016 Nov 18;5:. (PMID: 27858593)
ACS Chem Biol. 2014 Mar 21;9(3):630-4. (PMID: 24359083)
Science. 2003 Jan 31;299(5607):682-6. (PMID: 12560545)
Phys Chem Chem Phys. 2013 May 28;15(20):7760-7. (PMID: 23598364)
Chem Sci. 2017 Aug 1;8(8):5345-5355. (PMID: 28970913)
Faraday Discuss. 2013;164:57-69. (PMID: 24466658)
Biophys J. 1998 Apr;74(4):2046-58. (PMID: 9545063)
J Nanobiotechnology. 2013 Apr 03;11:8. (PMID: 23552456)
Anal Chem. 2020 Apr 21;92(8):5621-5644. (PMID: 32182049)
J Biol Chem. 1999 Jun 4;274(23):15967-70. (PMID: 10347141)
Nano Lett. 2019 Feb 13;19(2):921-929. (PMID: 30484321)
Nano Lett. 2012 Jul 11;12(7):3690-4. (PMID: 22668081)
Chem Rev. 2006 Aug;106(8):3080-94. (PMID: 16895319)
Biochem Soc Trans. 1987 Aug;15(4):717-8. (PMID: 3315772)
Methods. 2008 Sep;46(1):11-7. (PMID: 18586103)
Biophys Chem. 2014 Feb;186:46-54. (PMID: 24342874)
J Mol Biol. 2008 Oct 3;382(2):371-84. (PMID: 18638483)
J Biol Chem. 1983 Feb 10;258(3):1752-7. (PMID: 6822532)
Int J Mol Sci. 2020 Jun 01;21(11):. (PMID: 32492921)
Sensors (Basel). 2020 Jun 21;20(12):. (PMID: 32575916)
J Am Chem Soc. 2017 Mar 1;139(8):2964-2971. (PMID: 28132499)
Science. 1995 Feb 10;267(5199):871-4. (PMID: 17813918)
Science. 2009 Jan 2;323(5910):133-8. (PMID: 19023044)
Annu Rev Anal Chem (Palo Alto Calif). 2010;3:319-40. (PMID: 20636045)
Grant Information:
R21 GM126246 United States GM NIGMS NIH HHS
Substance Nomenclature:
EC 1.8.1.7 (Glutathione Reductase)
GAN16C9B8O (Glutathione)
ULW86O013H (Glutathione Disulfide)
Entry Date(s):
Date Created: 20220225 Date Completed: 20220314 Latest Revision: 20230309
Update Code:
20240104
PubMed Central ID:
PMC8904319
DOI:
10.1021/acs.analchem.1c05091
PMID:
35213143
Czasopismo naukowe
Understanding functional states of individual redox enzymes is important because electron-transfer reactions are fundamental to life, and single-enzyme molecules exhibit molecule-to-molecule heterogeneity in their properties, such as catalytic activity. Zero-mode waveguides (ZMW) constitute a powerful tool for single-molecule studies, enabling investigations of binding reactions up to the micromolar range due to the ability to trap electromagnetic radiation in zeptoliter-scale observation volumes. Here, we report the potential-dependent fluorescence dynamics of single glutathione reductase (GR) molecules using a bimodal electrochemical ZMW (E-ZMW), where a single-ring electrode embedded in each of the nanopores of an E-ZMW array simultaneously serves to control electrochemical potential and to confine optical radiation within the nanopores. Here, the redox state of GR is manipulated using an external potential control of the Au electrode in the presence of a redox mediator, methyl viologen (MV). Redox-state transitions in GR are monitored by correlating electrochemical and spectroscopic signals from freely diffusing MV/GR in 60 zL effective observation volumes at single GR molecule average pore occupancy, ⟨ n ⟩ ∼ 0.8. Fluorescence intensities decrease (increase) at reducing (oxidizing) potentials for MV due to the MV-mediated control of the GR redox state. The spectroelectrochemical response of GR to the enzyme substrate, i.e., glutathione disulfide (GSSG), shows that GSSG promotes GR oxidation via enzymatic reduction. The capabilities of E-ZMWs to probe spectroelectrochemical phenomena in zL-scale-confined environments show great promise for the study of single-enzyme reactions and can be extended to important technological applications, such as those in molecular diagnostics.

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies