Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Numerical comparison of local transceiver arrays of fractionated dipoles and microstrip antennas for body imaging at 7 T.

Tytuł:
Numerical comparison of local transceiver arrays of fractionated dipoles and microstrip antennas for body imaging at 7 T.
Autorzy:
Stelter JK; Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany.
Ladd ME; Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany.; Erwin L. Hahn Institute for MRI, University Duisburg-Essen, Essen, Germany.; Faculty of Physics and Astronomy, Heidelberg University, Heidelberg, Germany.; Faculty of Medicine, Heidelberg University, Heidelberg, Germany.
Fiedler TM; Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany.
Źródło:
NMR in biomedicine [NMR Biomed] 2022 Aug; Vol. 35 (8), pp. e4722. Date of Electronic Publication: 2022 Mar 17.
Typ publikacji:
Journal Article; Research Support, Non-U.S. Gov't
Język:
English
Imprint Name(s):
Publication: Chichester : Wiley
Original Publication: London : Heyden & Son, 1988-
MeSH Terms:
Magnetic Resonance Imaging*/instrumentation
Magnetic Resonance Imaging*/methods
Models, Anatomic*
Equipment Design ; Female ; Humans ; Male ; Phantoms, Imaging ; Signal-To-Noise Ratio
References:
Cao Z, Park J, Cho Z-H, Collins CM. Numerical evaluation of image homogeneity, signal-to-noise ratio, and specific absorption rate for human brain imaging at 1.5, 3, 7, 10.5, and 14T in an 8-channel transmit/receive array. J Magn Reson Imaging. 2015;41(5):1432-1439. doi:10.1002/jmri.24689.
Fiedler TM, Ladd ME, Bitz AK. SAR simulations & safety. NeuroImage. 2018;168:33-58. doi:10.1016/j.neuroimage.2017.03.035.
Adriany G, van de Moortele P-F, Wiesinger F, et al. Transmit and receive transmission line arrays for 7 Tesla parallel imaging. Magn Reson Med. 2005;53(2):434-445. doi:10.1002/mrm.20321.
Collins CM, Liu W, Swift BJ, Smith MB. Combination of optimized transmit arrays and some receive array reconstruction methods can yield homogeneous images at very high frequencies. Magn Reson Med. 2005;54(6):1327-1332. doi:10.1002/mrm.20729.
Metzger GJ, Snyder C, Akgun C, Vaughan T, Ugurbil K, van de Moortele P-F. Local B1+ shimming for prostate imaging with transceiver arrays at 7T based on subject-dependent transmit phase measurements. Magn Reson Med. 2008;59(2):396-409. doi:10.1002/mrm.21476.
Fiedler TM, Ladd ME, Clemens M, Bitz AK. Safety of subjects during radiofrequency exposure in ultra-high-field magnetic resonance imaging. IEEE Lett Electromagn Compat Pract Appl. 2020;2(3):85-91. doi:10.1109/LEMCPA.2020.3029747.
Lattanzi R, Sodickson DK, Grant AK, Zhu Y. Electrodynamic constraints on homogeneity and radiofrequency power deposition in multiple coil excitations. Magn Reson Med. 2009;61(2):315-334. doi:10.1002/mrm.21782.
Raaijmakers AJE, Italiaander M, Voogt IJ, et al. The fractionated dipole antenna: a new antenna for body imaging at 7 Tesla. Magn Reson Med. 2016;75(3):1366-1374. doi:10.1002/mrm.25596.
Krikken E, Steensma BR, Voogt IJ, et al. Homogeneous B1+ for bilateral breast imaging at 7 T using a five dipole transmit array merged with a high density receive loop array. NMR Biomed. 2019;32(2):e4039. doi:10.1002/nbm.4039.
Rietsch SHG, Orzada S, Maderwald S, et al. 7T ultra-high field body MR imaging with an 8-channel transmit/32-channel receive radiofrequency coil array. Med Phys. 2018;45(7):2978-2990. doi:10.1002/mp.12931.
Orzada S, Bitz AK, Schäfer LC, Ladd SC, Ladd ME, Maderwald S. Open design eight-channel transmit/receive coil for high-resolution and real-time ankle imaging at 7 T. Med Phys. 2011;38(3):1162-1167. doi:10.1118/1.3553399.
Raaijmakers AJE, Ipek O, Klomp DWJ, et al. Design of a radiative surface coil array element at 7 T: the single-side adapted dipole antenna. Magn Reson Med. 2011;66(5):1488-1497. doi:10.1002/mrm.22886.
Ertürk MA, Raaijmakers AJE, Adriany G, Uğurbil K, Metzger GJ. A 16-channel combined loop-dipole transceiver array for 7 Tesla body MRI. Magn Reson Med. 2017;77(2):884-894. doi:10.1002/mrm.26153.
Orzada S, Maderwald S, Kopp L, Ladd ME, Nassenstein K, Bitz AK. A 16-channel micro strip Tx/Rx array for bilateral breast imaging at 7 tesla. Proc Int Soc Magn Reson Med. 2012;20:0430.
Orzada S, Quick HH, Ladd ME, et al. A flexible 8-channel transmit/receive body coil for 7 T human imaging. Proc Int Soc Magn Reson Med. 2009;17:2999.
Orzada S, Maderwald S, Kraff O, et al. 16-channel Tx/Rx body coil for RF shimming with selected Cp modes at 7T. Proc Int Soc Magn Reson Med. 2010;18:50.
Orzada S, Kraff O, Schfer LC, et al. 8-channel transmit/receive head coil for 7 T human imaging using intrinsically decoupled strip line elements with meanders. Proc Int Soc Magn Reson Med. 2009;17:3010.
Brunner DO, De Zanche N, Froehlich J, Baumann D, Pruessmann KP. A symmetrically fed microstrip coil array for 7T. Proc Int Soc Magn Reson Med. 2007;15:448.
Orzada S, Bahr A, Bolz T. A novel 7 T microstrip element using meanders to enhance decoupling. Proc Int Soc Magn Reson Med. 2008;16:2979.
Rietsch SHG, Quick HH, Orzada S. Impact of different meander sizes on the RF transmit performance and coupling of microstrip line elements at 7 T. Med Phys. 2015;42(8):4542-4552. doi:10.1118/1.4923177.
Rietsch SHG, Orzada S, Bitz AK, Gratz M, Ladd ME, Quick HH. Parallel transmit capability of various RF transmit elements and arrays at 7T MRI. Magn Reson Med. 2018;79(2):1116-1126. doi:10.1002/mrm.26704.
Fiedler TM, Orzada S, Flöser M, et al. Performance and safety assessment of an integrated transmit array for body imaging at 7 T under consideration of specific absorption rate, tissue temperature, and thermal dose. NMR Biomed. 2021:e4656. doi:10.1002/nbm.4656.
Eichfelder G, Gebhardt M. Local specific absorption rate control for parallel transmission by virtual observation points. Magn Reson Med. 2011;66(5):1468-1476. doi:10.1002/mrm.22927.
Christ A, Kainz W, Hahn EG, et al. The Virtual Family-development of surface-based anatomical models of two adults and two children for dosimetric simulations. Phys Med Biol. 2010;55(2):N23-N38. doi:10.1088/0031-9155/55/2/N01.
Gabriel S, Lau RW, Gabriel C. The dielectric properties of biological tissues: II. Measurements in the frequency range 10 Hz to 20 GHz. Phys Med Biol. 1996;41(11):2251. doi:10.1088/0031-9155/41/11/002-2269.
Guérin B, Gebhardt M, Serano P, et al. Comparison of simulated parallel transmit body arrays at 3 T using excitation uniformity, global SAR, local SAR, and power efficiency metrics. Magn Reson Med. 2015;73(3):1137-1150. doi:10.1002/mrm.25243.
Orzada S, Bitz AK, Johst S, et al. Analysis of an integrated 8-channel Tx/Rx body array for use as a body coil in 7-tesla MRI. Front Phys. 2017;5. doi:10.3389/fphy.2017.00017.
Grissom W, Yip C, Zhang Z, Stenger VA, Fessler JA, Noll DC. Spatial domain method for the design of RF pulses in multicoil parallel excitation. Magn Reson Med. 2006;56(3):620-629. doi:10.1002/mrm.20978.
Setsompop K, Wald LL, Alagappan V, Gagoski BA, Adalsteinsson E. Magnitude least squares optimization for parallel radio frequency excitation design demonstrated at 7 Tesla with eight channels. Magn Reson Med. 2008;59(4):908-915. doi:10.1002/mrm.21513.
Fiedler TM, Orzada S, Flöser M, Rietsch SHG, Quick HH, Ladd ME, Bitz AK Performance analysis of integrated RF microstrip transmit antenna arrays with high channel count for body imaging at 7 T. NMR Biomed. 2021;34(7):e4515. doi:10.1002/nbm.4515.
Medical Electrical Equipment - Part 2-33: Particular Requirements for the Basic Safety and Essential Performance of Magnetic Resonance Equipment for Medical Diagnosis. International Standard IEC 60601-2-33. Ed. 3.2. International Electrotechnical Commission; 2015.
Kellman P. Erratum to Kellman P, McVeigh ER. Image reconstruction in SNR units: a general method for SNR measurement. Magn Reson Med. 2005;54:1439-1447. Magn Reson Med. 2007;58(1):211-212. doi:10.1002/mrm.21261.
Roemer PB, Edelstein WA, Hayes CE, Souza SP, Mueller OM. The NMR phased array. Magn Reson Med. 1990;16(2):192-225. doi:10.1002/mrm.1910160203.
Keil B, Wald LL. Massively parallel MRI detector arrays. J Magn Reson. 2013;229:75-89. doi:10.1016/j.jmr.2013.02.001.
Cao Z, Oh S, Sica CT, et al. Bloch-based MRI system simulator considering realistic electromagnetic fields for calculation of signal, noise, and specific absorption rate. Magn Reson Med. 2014;72(1):237-247. doi:10.1002/mrm.24907.
Pruessmann KP, Weiger M, Scheidegger MB, Boesiger P. SENSE: sensitivity encoding for fast MRI. Magn Reson Med. 1999;42(5):952-962. doi:10.1002/(SICI)1522-2594(199911)42:5%3C952::AID-MRM16%3E3.0.CO;2-S.
Chen G, Lattanzi R, Sodickson D, Wiggins G. Approaching the ultimate intrinsic SNR with dense arrays of electric dipole antennas. Proc Int Soc Magn Reson Med. 2016;24:0168.
Lattanzi R, Wiggins GC, Zhang B, Duan Q, Brown R, Sodickson DK. Approaching ultimate intrinsic signal-to-noise ratio with loop and dipole antennas. Magn Reson Med. 2018;79(3):1789-1803. doi:10.1002/mrm.26803.
Wiggins GC, Zhang B, Cloos MA, et al. Mixing loops and electric dipole antennas for increased sensitivity at 7 tesla. Proc Int Soc Magn Reson Med. 2013;21:2737.
Pfrommer A, Henning A. On the contribution of curl-free current patterns to the ultimate intrinsic signal-to-noise ratio at ultra-high field strength. NMR Biomed. 2017;30(5):e3691. doi:10.1002/nbm.3691.
Sodickson DK, Wiggins GC, Chen G, Lakshmanan K, Lattanzi R. More than meets the eye: the mixed character of electric dipole coils, and implications for high-field performance. Proc Int Soc Magn Reson Med. 2016;24:0389.
Raaijmakers AJE, Luijten PR, van den Berg CAT. Dipole antennas for ultrahigh-field body imaging: a comparison with loop coils. NMR Biomed. 2016;29(9):1122-1130. doi:10.1002/nbm.3356.
Eryaman Y, Guerin B, Keil B, et al. SAR reduction in 7T C-spine imaging using a "dark modes" transmit array strategy. Magn Reson Med. 2015;73(4):1533-1539. doi:10.1002/mrm.25246.
Chen G, Lakshmanan K, Sodickson D, Wiggins G. A combined electric dipole and loop head coil for 7T head imaging. Proc Int Soc Magn Reson Med. 2015;23:3133.
Voogt IJ, Klomp DWJ, Hoogduin H, et al. Combined 8-channel transceiver fractionated dipole antenna array with a 16-channel loop coil receive array for body imaging at 7 Tesla. Proc Int Soc Magn Reson Med. 2015;23:0631.
Orzada S, Solbach K, Gratz M, et al. A 32-channel parallel transmit system add-on for 7T MRI. PLoS ONE. 2019;14(9):e0222452. doi:10.1371/journal.pone.0222452.
Hurshkainen A, Simovski C, Glybovski S. Passive decoupling techniques in ultra-high field MRI. J Phys Conf Ser. 2018;1092:12049. doi:10.1088/1742-6596/1092/1/012049.
Hurshkainen A, Mollaei MSM, Dubois M, et al. Decoupling of closely spaced dipole antennas for ultrahigh field MRI with metasurfaces. IEEE Trans Antennas Propag. 2021;69(2):1094-1106. doi:10.1109/TAP.2020.3016495.
Zivkovic I, de Castro CA, Webb A. Design and characterization of an eight-element passively fed meander-dipole array with improved specific absorption rate efficiency for 7 T body imaging. NMR Biomed. 2019;32(8):e4106. doi:10.1002/nbm.4106.
Sadeghi-Tarakameh A, Adriany G, Metzger GJ, et al. Improving radiofrequency power and specific absorption rate management with bumped transmit elements in ultra-high field MRI. Magn Reson Med. 2020;84(6):3485-3493. doi:10.1002/mrm.28382.
Hurshkainen AA, Steensma B, Glybovski SB, et al. A parametric study of radiative dipole body array coil for 7 Tesla MRI. Photon Nanostructures Fundam Appl. 2020;39:100764. doi:10.1016/j.photonics.2019.100764.
Contributed Indexing:
Keywords: body imaging; dipole antennas; microstrip antennas; transmit arrays; ultra-high field
Entry Date(s):
Date Created: 20220228 Date Completed: 20220708 Latest Revision: 20220810
Update Code:
20240104
DOI:
10.1002/nbm.4722
PMID:
35226966
Czasopismo naukowe
Longitudinally orientated dipoles and microstrip antennas have both demonstrated superior results as RF transmit elements for body imaging at 7 T MRI, and are as of today the most commonly used transmit elements. In this study, the performances of the two antenna concepts were compared for use in local RF antenna arrays by numerical simulations. Antenna elements investigated are the fractionated dipole and the microstrip line with meander structures. Phantom simulations with a single antenna element were performed and evaluated with regard to specific absorption rate (SAR) efficiency in the center of the subject. Simulations of array configurations with 8 and 16 elements were performed with anatomical body models. Both antenna elements were combined with a loop coil to compare hybrid configurations. Singular value decomposition of the B 1 + fields, RF shimming, and calculation of the voxel-wise power and SAR efficiencies were performed in regions of interest with varying sizes to evaluate the transmit performance. The signal-to-noise ratio (SNR) was evaluated to estimate the receive performance. Simulated data show similar transmit profiles for the two antenna types in the center of the phantom (penetration depth > 20 mm). For body imaging, no considerable differences were determined for the different antenna configurations with regard to the transmit performance. Results show the advantage of 16 transmit channels compared with today's commonly used 8-channel systems (minimum RF shimming excitation error of 4.7% (4.3%) versus 2.7% (2.8%) for the 8-channel and 16-channel configurations with the microstrip antennas in a (5 cm) 3 cube in the center of a male (female) body model). Highest SNR is achieved for the 16-channel configuration with fractionated dipoles. The combination of either fractionated dipoles or microstrip antennas with loop coils is more favorable with regard to the transmit performance compared with only increasing the number of elements.
(© 2022 The Authors. NMR in Biomedicine published by John Wiley & Sons Ltd.)

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies