Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Limited Mechanistic Link Between the Monod Equation and Methanogen Growth: a Perspective from Metabolic Modeling.

Tytuł:
Limited Mechanistic Link Between the Monod Equation and Methanogen Growth: a Perspective from Metabolic Modeling.
Autorzy:
Jin Q; Geobiology Group, University of Oregongrid.170202.6, Eugene, Oregon, USA.
Wu Q; Geobiology Group, University of Oregongrid.170202.6, Eugene, Oregon, USA.
Shapiro BM; Geobiology Group, University of Oregongrid.170202.6, Eugene, Oregon, USA.
McKernan SE; Geobiology Group, University of Oregongrid.170202.6, Eugene, Oregon, USA.
Źródło:
Microbiology spectrum [Microbiol Spectr] 2022 Apr 27; Vol. 10 (2), pp. e0225921. Date of Electronic Publication: 2022 Mar 03.
Typ publikacji:
Journal Article; Research Support, U.S. Gov't, Non-P.H.S.
Język:
English
Imprint Name(s):
Original Publication: Washington, DC : ASM Press, 2013-
MeSH Terms:
Metabolic Networks and Pathways*
Models, Biological*
Kinetics
References:
J Bacteriol. 1982 Aug;151(2):932-41. (PMID: 6807965)
Eur J Biochem. 1989 Mar 15;180(2):421-7. (PMID: 2924775)
Nat Chem Biol. 2009 Aug;5(8):593-9. (PMID: 19561621)
Archaea. 2014 Mar 04;2014:898453. (PMID: 24729742)
Biotechnol Bioeng. 1998 Sep 20;59(6):724-31. (PMID: 10099393)
Eur J Biochem. 1998 Jan 15;251(1-2):538-43. (PMID: 9492330)
Eur J Biochem. 1999 May;261(3):674-81. (PMID: 10215883)
Metabolomics. 2021 May 9;17(5):48. (PMID: 33969452)
Appl Environ Microbiol. 1985 Sep;50(3):589-94. (PMID: 16346878)
J Contam Hydrol. 2011 Jul 1;125(1-4):1-12. (PMID: 21652106)
J Biotechnol. 2016 Mar 20;222:1-8. (PMID: 26826510)
Biotechnol Bioeng. 1996 Mar 20;49(6):683-9. (PMID: 18626864)
PLoS Comput Biol. 2017 Feb 10;13(2):e1005396. (PMID: 28187134)
Appl Microbiol Biotechnol. 2007 Jan;73(6):1241-50. (PMID: 17119956)
FEBS Lett. 2013 Sep 2;587(17):2772-7. (PMID: 23892083)
J Bacteriol. 1991 Apr;173(8):2481-7. (PMID: 2013570)
Antonie Van Leeuwenhoek. 1993;63(3-4):213-24. (PMID: 8279820)
Curr Opin Biotechnol. 2020 Dec;66:27-35. (PMID: 32659683)
Eur J Biochem. 2003 Jan;270(1):66-75. (PMID: 12492476)
J Bacteriol. 2006 Nov;188(22):7922-31. (PMID: 16980466)
Curr Opin Biotechnol. 2015 Aug;34:16-22. (PMID: 25461507)
FEBS Lett. 2013 Sep 2;587(17):2832-41. (PMID: 23831062)
Proc R Soc Lond B Biol Sci. 1965 Oct 12;163(991):224-31. (PMID: 4378482)
Microbiol Mol Biol Rev. 1998 Sep;62(3):636-45. (PMID: 9729603)
Biochem Soc Trans. 1995 May;23(2):341-66. (PMID: 7672373)
J Bacteriol. 2018 Sep 24;200(20):. (PMID: 30082458)
Res Microbiol. 1999 Sep;150(7):431-8. (PMID: 10540906)
Biotechnol Bioeng. 1995 Jan 5;45(1):91-4. (PMID: 18623056)
Biochem J. 1992 Sep 1;286 ( Pt 2):313-30. (PMID: 1530563)
ISME J. 2014 Aug;8(8):1747-51. (PMID: 24522260)
PLoS Comput Biol. 2012;8(4):e1002483. (PMID: 22570597)
Nat Chem Biol. 2016 Jul;12(7):482-9. (PMID: 27159581)
Eur J Biochem. 1992 May 15;206(1):87-92. (PMID: 1587287)
Eur J Biochem. 1994 Apr 15;221(2):855-61. (PMID: 8174566)
Nat Protoc. 2019 Mar;14(3):639-702. (PMID: 30787451)
Biophys J. 2002 Oct;83(4):1797-808. (PMID: 12324402)
mBio. 2018 Jul 3;9(4):. (PMID: 29970471)
Biotechnol Bioeng. 1973 Nov;15(6):1159-77. (PMID: 4203180)
Mol Syst Biol. 2006;2:2006.0004. (PMID: 16738551)
Biophys J. 2001 Feb;80(2):626-34. (PMID: 11159431)
Microbiology (Reading). 2005 May;151(Pt 5):1697-1705. (PMID: 15870477)
Biotechnol J. 2013 Sep;8(9):1070-9. (PMID: 23420771)
Microbiol Mol Biol Rev. 1998 Sep;62(3):646-66. (PMID: 9729604)
Appl Environ Microbiol. 2002 Sep;68(9):4448-56. (PMID: 12200299)
J Am Chem Soc. 2011 Apr 20;133(15):5626-8. (PMID: 21438550)
Microb Ecol. 1980 Dec;5(4):281-6. (PMID: 24232515)
Proc Natl Acad Sci U S A. 1999 Aug 31;96(18):10098-103. (PMID: 10468568)
Eur J Biochem. 1994 Oct 1;225(1):179-86. (PMID: 7925436)
Eur J Biochem. 1999 Oct 1;265(1):325-35. (PMID: 10491189)
J Biotechnol. 2017 Nov 10;261:215-220. (PMID: 28655634)
Mol Aspects Med. 2009 Feb-Apr;30(1-2):42-59. (PMID: 18601945)
Appl Environ Microbiol. 1983 Aug;46(2):348-55. (PMID: 16346361)
Eur J Biochem. 1997 Feb 1;243(3):670-7. (PMID: 9057830)
Microb Ecol. 2007 May;53(4):513-23. (PMID: 17333428)
J Bacteriol. 1985 Oct;164(1):95-101. (PMID: 3930472)
Plant Mol Biol. 2006 May;61(1-2):255-68. (PMID: 16786305)
Eur J Biochem. 1984 May 15;141(1):217-22. (PMID: 6327309)
FEMS Microbiol Lett. 2014 Oct;359(2):147-53. (PMID: 25088360)
Contributed Indexing:
Keywords: Monod equation; half-saturation constant; maximum growth rate; metabolic modeling; methanogenesis; microbial kinetics; specific affinity
Entry Date(s):
Date Created: 20220303 Date Completed: 20220429 Latest Revision: 20231020
Update Code:
20240105
PubMed Central ID:
PMC9045329
DOI:
10.1128/spectrum.02259-21
PMID:
35238612
Czasopismo naukowe
The Monod equation has been widely applied as the general rate law of microbial growth, but its applications are not always successful. By drawing on the frameworks of kinetic and stoichiometric metabolic models and metabolic control analysis, the modeling reported here simulated the growth kinetics of a methanogenic microorganism and illustrated that different enzymes and metabolites control growth rate to various extents and that their controls peak at either very low, intermediate, or very high substrate concentrations. In comparison, with a single term and two parameters, the Monod equation only approximately accounts for the controls of rate-determining enzymes and metabolites at very high and very low substrate concentrations, but neglects the enzymes and metabolites whose controls are most notable at intermediate concentrations. These findings support a limited link between the Monod equation and methanogen growth, and unify the competing views regarding enzyme roles in shaping growth kinetics. The results also preclude a mechanistic derivation of the Monod equation from methanogen metabolic networks and highlight a fundamental challenge in microbiology: single-term expressions may not be sufficient for accurate prediction of microbial growth. IMPORTANCE The Monod equation has been widely applied to predict the rate of microbial growth, but its application is not always successful. Using a novel metabolic modeling approach, we simulated the growth of a methanogen and uncovered a limited mechanistic link between the Monod equation and the methanogen's metabolic network. Specifically, the equation provides an approximation to the controls by rate-determining metabolites and enzymes at very low and very high substrate concentrations, but it is missing the remaining enzymes and metabolites whose controls are most notable at intermediate concentrations. These results support the Monod equation as a useful approximation of growth rates and highlight a fundamental challenge in microbial kinetics: single-term rate expressions may not be sufficient for accurate prediction of microbial growth.

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies