Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Deciphering Fluid Transport Within Leaf-Inspired Capillary Networks Based on a 3D Computational Model.

Tytuł:
Deciphering Fluid Transport Within Leaf-Inspired Capillary Networks Based on a 3D Computational Model.
Autorzy:
Mao M; State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, 710049, P. R. China.; NMPA Key Laboratory for Research and Evaluation of Additive Manufacturing Medical Devices, Xi'an Jiaotong University, Xi'an, 710049, P. R. China.
Chen P; State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, 710049, P. R. China.; NMPA Key Laboratory for Research and Evaluation of Additive Manufacturing Medical Devices, Xi'an Jiaotong University, Xi'an, 710049, P. R. China.
He J; State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, 710049, P. R. China.; NMPA Key Laboratory for Research and Evaluation of Additive Manufacturing Medical Devices, Xi'an Jiaotong University, Xi'an, 710049, P. R. China.
Zhu G; School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an, 710049, P. R. China.
Li X; State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, 710049, P. R. China.; NMPA Key Laboratory for Research and Evaluation of Additive Manufacturing Medical Devices, Xi'an Jiaotong University, Xi'an, 710049, P. R. China.
Li D; State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, 710049, P. R. China.; NMPA Key Laboratory for Research and Evaluation of Additive Manufacturing Medical Devices, Xi'an Jiaotong University, Xi'an, 710049, P. R. China.
Źródło:
Small (Weinheim an der Bergstrasse, Germany) [Small] 2022 Apr; Vol. 18 (16), pp. e2108102. Date of Electronic Publication: 2022 Mar 07.
Typ publikacji:
Journal Article; Research Support, Non-U.S. Gov't
Język:
English
Imprint Name(s):
Original Publication: Weinheim, Germany : Wiley-VCH, c2005-
MeSH Terms:
Capillaries*
Computer Simulation*
Biological Transport ; Humans ; Stress, Mechanical
References:
H. Bae, A. S. Puranik, R. Gauvin, F. Edalat, B. Carrillo-Conde, N. A. Peppas, A. Khademhosseini, Sci. Transl. Med. 2012, 4, 5.
E. C. Novosel, C. Kleinhans, P. J. Kluger, Adv. Drug Delivery Rev. 2011, 63, 300.
J. Guerrero, Y.-W. Chang, A. A. Fragkopoulos, A. Fernandez-Nieves, Small 2020, 16, 1904344.
Q. Xie, J. Harting, Adv. Mater. 2021, 33, 2006390.
Y. S. Zhang, A. Arneri, S. Bersini, S. R. Shin, K. Zhu, Z. Goli-Malekabadi, J. Aleman, C. Colosi, F. Busignani, V. Dell'Erba, C. Bishop, T. Shupe, D. Demarchi, M. Moretti, M. Rasponi, M. R. Dokmeci, A. Atala, A. Khademhosseini, Biomaterials 2016, 110, 45.
N. Noor, A. Shapira, R. Edri, I. Gal, L. Wertheim, T. Dvir, Adv. Sci. 2019, 6, 1900344.
M. A. Skylar-Scott, S. G. M. Uzel, L. L. Nam, J. H. Ahrens, R. L. Truby, S. Damaraju, J. A. Lewis, Sci. Adv. 2019, 5, eaaw2459.
B. Grigoryan, S. J. Paulsen, D. C. Corbett, D. W. Sazer, C. L. Fortin, A. J. Zaita, P. T. Greenfield, N. J. Calafat, J. P. Gounley, A. H. Ta, F. Johansson, A. Randles, J. E. Rosenkrantz, J. D. Louis-Rosenberg, P. A. Galie, K. R. Stevens, J. S. Miller, Science 2019, 364, 458.
D. B. Kolesky, K. A. Homan, M. A. Skylar-Scott, J. A. Lewis, Proc. Natl. Acad. Sci. USA 2016, 113, 3179.
K. H. Song, C. B. Highley, A. Rouff, J. A. Burdick, Adv. Funct. Mater. 2018, 28, 1801331.
S. Ji, E. Almeida, M. Guvendiren, Acta Biomater. 2019, 95, 214.
W. F. Hynes, M. Pepona, C. Robertson, J. Alvarado, K. Dubbin, M. Triplett, J. J. Adorno, A. Randles, M. L. Moya, Sci. Adv. 2020, 6, eabb3308.
Y. Z. Qiu, B. Ahn, Y. Sakurai, C. E. Hansen, R. Tran, P. N. Mimche, R. G. Mannino, J. C. Ciciliano, T. J. Lamb, C. H. Joiner, S. F. Ofori-Acquah, W. A. Lam, Nat. Biomed. Eng. 2018, 2, 453.
B. Y. Zhang, M. Montgomery, M. D. Chamberlain, S. Ogawa, A. Korolj, A. Pahnke, L. A. Wells, S. Masse, J. Kim, L. Reis, A. Momen, S. S. Nunes, A. R. Wheeler, K. Nanthakumar, G. Keller, M. V. Sefton, M. Radisic, Nat. Mater. 2016, 15, 669.
C. D. Murray, Proc. Natl. Acad. Sci. USA 1926, 12, 207.
K. A. McCulloh, J. S. Sperry, F. R. Adler, Nature 2003, 421, 939.
J. R. Gershlak, S. Hernandez, G. Fontana, L. R. Perreault, K. J. Hansen, S. A. Larson, B. Y. K. Binder, D. M. Dolivo, T. H. Yang, T. Dominko, M. W. Rolle, P. J. Weathers, F. Medina-Bolivar, C. L. Cramer, W. L. Murphy, G. R. Gaudette, Biomaterials 2017, 125, 13.
W. M. Wu, R. M. Guijt, Y. E. Silina, M. Koch, A. Manz, RSC Adv. 2016, 6, 22469.
J. He, M. Mao, Y. Liu, J. Shao, Z. Jin, D. Li, Adv. Healthcare Mater. 2013, 2, 1108.
W. M. Wu, A. Manz, RSC Adv. 2017, 7, 32710.
L. Wong, J. D. Pegan, B. Gabela-Zuniga, M. Khine, K. E. McCloskey, Biofabrication 2017, 9, 021001.
J. He, M. Mao, D. Li, Y. Liu, Z. Jin, J. Bionic Eng. 2014, 11, 109.
R. Fan, Y. H. Sun, J. D. Wan, RSC Adv. 2015, 5, 90596.
M. E. Miali, M. Colasuonno, S. Surdo, R. Palomba, R. Pereira, E. Rondanina, A. Diaspro, G. Pascazio, P. Decuzzi, ACS Appl. Mater. Interfaces 2019, 11, 31627.
M. Mao, J. K. He, Y. J. Lu, X. Li, T. J. Li, W. X. Zhou, D. C. Li, Biofabrication 2018, 10, 025008.
M. Mao, H. P. Bei, C. H. Lam, P. Y. Chen, S. Q. Wang, Y. Chen, J. K. He, X. Zhao, Small 2020, 16, 2000546.
D. K. Dang, B. Zhou, Int. J. Energy Res. 2021, 45, 20285.
L. J. Hickey, Am. J. Bot. 1973, 60, 17.
C. Prohm, H. Stark, Lab Chip 2014, 14, 2115.
E. Katifori, G. J. Szollosi, M. O. Magnasco, Phys. Rev. Lett. 2010, 104, 4.
L. Sack, E. M. Dietrich, C. M. Streeter, D. Sanchez-Gomez, N. M. Holbrook, Proc. Natl. Acad. Sci. USA 2008, 105, 1567.
K. P. Ivanov, M. K. Kalinina, Y. I. Levkovich, Microvasc. Res. 1981, 22, 143.
S. Valastyan, R. A. Weinberg, Cell 2011, 147, 275.
M. B. Chen, J. A. Whisler, J. Fröse, C. Yu, Y. Shin, R. D. Kamm, Nat. Protoc. 2017, 12, 865.
D. Wirtz, K. Konstantopoulos, P. C. Searson, Nat. Rev. Cancer 2011, 11, 512.
M. F. Coughlin, R. D. Kamm, Adv. Healthcare Mater. 2020, 9, 1901410.
D. Caballero, S. Kaushik, V. M. Correlo, J. M. Oliveira, R. L. Reis, S. C. Kundu, Biomaterials 2017, 149, 98.
C. H. Dreyer, K. Kjaergaard, M. Ding, L. Qin, J. Orthop. Transl. 2020, 24, 46.
Q. Wei, S. H. Wang, F. Han, H. Wang, W. D. Zhang, Q. F. Yu, C. J. Liu, L. G. Ding, J. Y. Wang, L. L. Yu, C. H. Zhu, B. Li, Biomater. Transl. 2021, 2, 323.
J. Massague, A. C. Obenauf, Nature 2016, 529, 298.
C. A. Price, Methods Mol. Biol. 2012, 918, 41.
Contributed Indexing:
Keywords: fluid dynamics; leaf-inspired capillary networks; organ-on-a-chip
Entry Date(s):
Date Created: 20220307 Date Completed: 20220422 Latest Revision: 20220601
Update Code:
20240104
DOI:
10.1002/smll.202108102
PMID:
35253997
Czasopismo naukowe
Leaf venation provides a promising template for engineering capillary-like vasculature in vitro due to its highly efficient fluid transport capability and remarkable similarities to native capillary networks. A key challenge in exploring the potential biological applications of leaf-inspired capillary networks (LICNs) is to accurately and quantitively understand its internal fluid transport characteristics. Here, a centerline-induced partition-assembly modeling strategy is proposed to establish a 3D computational model, which can accurately simulate the flow conditions in LICNs. Based on the 3D flow simulation, the authors demonstrate the excellent defect-resistant fluid transport capability of LICNs. Interestingly, structural defects in the primary channel can effectively accelerate the overall perfusion efficiency. Flow patterns in LICNs with multiple defects can be estimated by simple superposition of the simulation results derived from the corresponding single-defect models. The 3D computational model is further used to determine the optimal perfusion parameter for the in-vitro formation of endothelialized capillary networks by mimicking native microvascular flow conditions. The endothelialized networks can recapitulate the vascular colonization process and reveal a strong correlation between cancer cell adhesion and flow-induced shear stress. This study offers a quantitative tool to scrutinize the fluid and biological transport mechanisms within LICNs for various biomedical applications.
(© 2022 Wiley-VCH GmbH.)

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies