Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

A systematic approach for evaluating the role of surface-exposed loops in trypsin-like serine proteases applied to the 170 loop in coagulation factor VIIa.

Tytuł:
A systematic approach for evaluating the role of surface-exposed loops in trypsin-like serine proteases applied to the 170 loop in coagulation factor VIIa.
Autorzy:
Sorensen AB; Global Research, Novo Nordisk A/S, 2760, Måløv, Denmark.; Department of Chemistry and Bioscience, Aalborg University, 9220, Ålborg, Denmark.
Greisen PJ; Global Research, Novo Nordisk A/S, 2760, Måløv, Denmark.
Madsen JJ; Global and Planetary Health, College of Public Health, University of South Florida, Tampa, FL, 33612, USA.; Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, 33612, USA.
Lund J; Global Research, Novo Nordisk A/S, 2760, Måløv, Denmark.
Andersen G; Global Research, Novo Nordisk A/S, 2760, Måløv, Denmark.
Wulff-Larsen PG; Global Research, Novo Nordisk A/S, 2760, Måløv, Denmark.
Pedersen AA; Global Research, Novo Nordisk A/S, 2760, Måløv, Denmark.
Gandhi PS; Global Research, Novo Nordisk A/S, 2760, Måløv, Denmark.
Overgaard MT; Department of Chemistry and Bioscience, Aalborg University, 9220, Ålborg, Denmark.
Østergaard H; Global Research, Novo Nordisk A/S, 2760, Måløv, Denmark.
Olsen OH; Global Research, Novo Nordisk A/S, 2760, Måløv, Denmark. .; Novo Nordisk Foundation Center for Basic Metabolic Research, Section for Metabolic Receptology, University of Copenhagen, Blegdamsvej 3b, 2200, Copenhagen, Denmark. .
Źródło:
Scientific reports [Sci Rep] 2022 Mar 08; Vol. 12 (1), pp. 3747. Date of Electronic Publication: 2022 Mar 08.
Typ publikacji:
Journal Article; Research Support, Non-U.S. Gov't
Język:
English
Imprint Name(s):
Original Publication: London : Nature Publishing Group, copyright 2011-
MeSH Terms:
Factor VIIa*
Serine Endopeptidases*/metabolism
Substrate Specificity ; Trypsin/metabolism
References:
Biochem J. 2004 Apr 15;379(Pt 2):497-503. (PMID: 14686879)
Proc Natl Acad Sci U S A. 1996 Dec 10;93(25):14379-84. (PMID: 8962059)
J Biol Chem. 2004 Jul 23;279(30):31842-53. (PMID: 15152000)
Front Biosci (Landmark Ed). 2011 Jun 01;16(9):3196-215. (PMID: 21622229)
J Thromb Haemost. 2012 Nov;10(11):2402-5. (PMID: 22967237)
Trends Cardiovasc Med. 2000 May;10(4):171-6. (PMID: 11239798)
Biophys J. 2005 Aug;89(2):1183-93. (PMID: 15923233)
Thromb Res. 2010 Apr;125 Suppl 1:S7-S10. (PMID: 20156644)
Biochemistry. 2011 Nov 29;50(47):10195-202. (PMID: 22049947)
Methods Enzymol. 2013;523:109-43. (PMID: 23422428)
J Biol Chem. 2014 Dec 19;289(51):35388-96. (PMID: 25344622)
Biochimie. 2019 Nov;166:52-76. (PMID: 31505212)
J Mol Biol. 2002 Sep 20;322(3):591-603. (PMID: 12225752)
J Phys Chem B. 2013 Oct 24;117(42):12857-63. (PMID: 23621631)
J Mol Biol. 1977 Apr 25;111(4):415-38. (PMID: 864704)
J Thromb Haemost. 2007 Jul;5 Suppl 1:81-94. (PMID: 17635714)
J Biol Chem. 2001 May 18;276(20):17229-35. (PMID: 11278475)
J Biol Chem. 2008 Oct 31;283(44):30010-4. (PMID: 18768474)
J Chem Theory Comput. 2015 Feb 10;11(2):609-22. (PMID: 25866491)
Science. 1992 Mar 6;255(5049):1249-53. (PMID: 1546324)
Methods Enzymol. 2011;487:545-74. (PMID: 21187238)
Acta Crystallogr D Struct Biol. 2021 Jun 1;77(Pt 6):809-819. (PMID: 34076594)
Nature. 1996 Mar 7;380(6569):41-6. (PMID: 8598903)
Nat Struct Mol Biol. 2006 Jun;13(6):557-8. (PMID: 16699514)
EMBO J. 1997 Nov 17;16(22):6626-35. (PMID: 9362477)
Proc Natl Acad Sci U S A. 2008 Feb 12;105(6):1832-7. (PMID: 18250335)
J Biol Chem. 1999 Aug 20;274(34):24171-5. (PMID: 10446191)
J Thromb Haemost. 2015 Apr;13(4):580-91. (PMID: 25604127)
Nat Commun. 2015 Jul 02;6:7653. (PMID: 26134632)
Nature. 2020 Sep;585(7825):357-362. (PMID: 32939066)
Front Biosci (Landmark Ed). 2011 Jun 01;16(8):3156-63. (PMID: 21622226)
Protein Sci. 1996 Aug;5(8):1531-40. (PMID: 8844844)
Biophys J. 2019 May 21;116(10):1823-1835. (PMID: 31003762)
Proc Natl Acad Sci U S A. 1999 Mar 30;96(7):3562-7. (PMID: 10097076)
Biomolecules. 2021 Apr 08;11(4):. (PMID: 33917935)
FEBS J. 2009 Jun;276(11):3099-109. (PMID: 19490111)
Biochemistry. 1988 Oct 4;27(20):7785-93. (PMID: 3264725)
Acta Crystallogr D Biol Crystallogr. 2014 Aug;70(Pt 8):2152-62. (PMID: 25084334)
FASEB J. 2021 Feb;35(2):e21259. (PMID: 33417271)
PLoS One. 2013 May 21;8(5):e63090. (PMID: 23704889)
Thromb Haemost. 2021 Sep;121(9):1122-1137. (PMID: 34214998)
J Biol Chem. 1997 Aug 8;272(32):19875-9. (PMID: 9242651)
Cell Mol Life Sci. 2008 Apr;65(7-8):1220-36. (PMID: 18259688)
J Thromb Haemost. 2005 Nov;3(11):2401-8. (PMID: 16241939)
J Biol Chem. 2002 Dec 13;277(50):49027-35. (PMID: 12364340)
J Biol Chem. 2008 Nov 7;283(45):30433-7. (PMID: 18650443)
Biochemistry. 1991 Oct 29;30(43):10363-70. (PMID: 1931959)
J Mol Biol. 1975 Nov 15;98(4):693-717. (PMID: 512)
J Biol Chem. 2006 Aug 25;281(34):24873-88. (PMID: 16757484)
J Biol Chem. 2016 Feb 26;291(9):4671-83. (PMID: 26694616)
FEBS Lett. 2007 Jan 9;581(1):71-6. (PMID: 17182039)
Sci Rep. 2022 Mar 8;12(1):3747. (PMID: 35260627)
J Biol Chem. 2001 Aug 3;276(31):29195-9. (PMID: 11389142)
Proc Natl Acad Sci U S A. 1999 Aug 3;96(16):8925-30. (PMID: 10430872)
EMBO J. 1999 Feb 15;18(4):804-14. (PMID: 10022823)
J Biomol Struct Dyn. 2018 Feb;36(3):621-633. (PMID: 28150568)
PLoS One. 2013;8(4):e59004. (PMID: 23565140)
Proc Natl Acad Sci U S A. 2012 Dec 26;109(52):21216-22. (PMID: 23197839)
J Thromb Haemost. 2015 Feb;13(2):262-7. (PMID: 25403348)
Biochemistry. 1989 Nov 28;28(24):9331-6. (PMID: 2611233)
Proc Natl Acad Sci U S A. 2010 Aug 10;107(32):14087-92. (PMID: 20660315)
Proc Natl Acad Sci U S A. 2011 Mar 29;108(13):5221-5. (PMID: 21368156)
J Biol Chem. 2020 Jan 10;295(2):517-528. (PMID: 31801825)
J Thromb Haemost. 2003 Jul;1(7):1487-94. (PMID: 12871284)
EMBO J. 2012 Apr 4;31(7):1630-43. (PMID: 22367392)
J Thromb Haemost. 2021 Jan;19(1):75-84. (PMID: 32885882)
J Thromb Haemost. 2018 Jul;16(7):1450-1454. (PMID: 29733494)
J Biol Chem. 2007 Oct 26;282(43):31569-79. (PMID: 17726015)
Protein Sci. 2007 Apr;16(4):671-82. (PMID: 17384232)
Structure. 2009 Dec 9;17(12):1669-1678. (PMID: 20004170)
Angew Chem Int Ed Engl. 2009;48(4):811-4. (PMID: 19101972)
Substance Nomenclature:
0 (trypsin-like serine protease)
EC 3.4.21.- (Serine Endopeptidases)
EC 3.4.21.21 (Factor VIIa)
EC 3.4.21.4 (Trypsin)
Entry Date(s):
Date Created: 20220309 Date Completed: 20220418 Latest Revision: 20220418
Update Code:
20240104
PubMed Central ID:
PMC8904457
DOI:
10.1038/s41598-022-07620-7
PMID:
35260627
Czasopismo naukowe
Proteases play a major role in many vital physiological processes. Trypsin-like serine proteases (TLPs), in particular, are paramount in proteolytic cascade systems such as blood coagulation and complement activation. The structural topology of TLPs is highly conserved, with the trypsin fold comprising two β-barrels connected by a number of variable surface-exposed loops that provide a surprising capacity for functional diversity and substrate specificity. To expand our understanding of the roles these loops play in substrate and co-factor interactions, we employ a systematic methodology akin to the natural truncations and insertions observed through evolution of TLPs. The approach explores a larger deletion space than classical random or directed mutagenesis. Using FVIIa as a model system, deletions of 1-7 amino acids through the surface exposed 170 loop, a vital allosteric regulator, was introduced. All variants were extensively evaluated by established functional assays and computational loop modelling with Rosetta. The approach revealed detailed structural and functional insights recapitulation and expanding on the main findings in relation to 170 loop functions elucidated over several decades using more cumbersome crystallization and single deletion/mutation methodologies. The larger deletion space was key in capturing the most active variant, which unexpectedly had a six-amino acid truncation. This variant would have remained undiscovered if only 2-3 deletions were considered, supporting the usefulness of the methodology in general protease engineering approaches. Our findings shed further light on the complex role that surface-exposed loops play in TLP function and supports the important role of loop length in the regulation and fine-tunning of enzymatic function throughout evolution.
(© 2022. The Author(s).)
Zaloguj się, aby uzyskać dostęp do pełnego tekstu.

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies