Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Developing an immune-related gene prognostic index associated with progression and providing new insights into the tumor immune microenvironment of prostate cancer.

Tytuł:
Developing an immune-related gene prognostic index associated with progression and providing new insights into the tumor immune microenvironment of prostate cancer.
Autorzy:
Feng D; Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, 610041, China.
Zhang F; Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, 610041, China.
Li D; Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, 610041, China.
Shi X; Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, 610041, China.
Xiong Q; Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, 610041, China.
Wei Q; Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, 610041, China.
Yang L; Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, 610041, China.
Źródło:
Immunology [Immunology] 2022 Jun; Vol. 166 (2), pp. 197-209. Date of Electronic Publication: 2022 Mar 16.
Typ publikacji:
Journal Article; Meta-Analysis; Research Support, Non-U.S. Gov't
Język:
English
Imprint Name(s):
Original Publication: Oxford : Blackwell Scientific Publications
MeSH Terms:
Neoplasm Recurrence, Local*/genetics
Neoplasm Recurrence, Local*/immunology
Neoplasm Recurrence, Local*/surgery
Prostatic Neoplasms*/genetics
Prostatic Neoplasms*/immunology
Prostatic Neoplasms*/surgery
Tumor Microenvironment*/immunology
Humans ; Male ; Neoplasm Grading ; Prognosis ; Prostatectomy
References:
Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021;71:209-49.
Albertsen PC. Prostate cancer screening and treatment: where have we come from and where are we going? BJU Int. 2020;126:218-24.
Lu-Yao GL, Albertsen PC, Moore DF, Shih W, Lin Y, DiPaola RS, et al. Outcomes of localized prostate cancer following conservative management. JAMA. 2009;302:1202-9.
Feng D, Liu S, Li D, Han P, Wei W. Analysis of conventional versus advanced pelvic floor muscle training in the management of urinary incontinence after radical prostatectomy: a systematic review and meta-analysis of randomized controlled trials. Transl Androl Urol. 2020;9:2031-45.
US Preventive Services Task Force, Grossman DC, Curry SJ, Owens DK, Bibbins-Domingo K, Caughey AB, et al. Screening for prostate cancer: US preventive services task force recommendation statement. JAMA. 2018;319:1901-13.
Hayes JH, Ollendorf DA, Pearson SD, Barry MJ, Kantoff PW, Lee PA, et al. Observation versus initial treatment for men with localized, low-risk prostate cancer: A cost-effectiveness analysis. Ann Intern Med. 2013;158:853-60.
Jain S, Lyons CA, Walker SM, McQuaid S, Hynes SO, Mitchell DM, et al. Validation of a metastatic assay using biopsies to improve risk stratification in patients with prostate cancer treated with radical radiation therapy. Ann Oncol. 2018;29:215-22.
Liu CM, Kao CL, Tseng YT, Lo YC, Chen CY. Ginger phytochemicals inhibit cell growth and modulate drug resistance factors in docetaxel resistant prostate cancer cell. Molecules. 2017;22:1477.
Eeles R, Goh C, Castro E, Bancroft E, Guy M, Al Olama AA, et al. The genetic epidemiology of prostate cancer and its clinical implications. Nat Rev Urol. 2014;11:18-31.
Vigneswaran HT, Jagai JS, Greenwald DT, Patel AP, Kumar M, Dobbs RW, et al. Association between environmental quality and prostate cancer stage at diagnosis. Prostate Cancer Prostatic Dis. 2021;24:1129-36.
Feng D, Xiong Q, Wei Q, Yang L. Cellular landscape of tumour microenvironment in prostate cancer. Immunology. 2022. https://doi.org/10.1111/imm.13456. Epub ahead of print.
Janiczek M, Szylberg Ł, Kasperska A, Kowalewski A, Parol M, Antosik P, et al. Immunotherapy as a promising treatment for prostate cancer: A systematic review. J Immunol Res. 2017;2017:4861570.
Lv D, Wu X, Chen X, Yang S, Chen W, Wang M, et al. A novel immune-related gene-based prognostic signature to predict biochemical recurrence in patients with prostate cancer after radical prostatectomy. Cancer Immunol Immunother. 2021;70:3587-602.
Goldman MJ, Craft B, Hastie M, Repečka K, McDade F, Kamath A, et al. Visualizing and interpreting cancer genomics data via the Xena platform. Nat Biotechnol. 2020;38:675-8.
Liu J, Lichtenberg T, Hoadley KA, Poisson LM, Lazar AJ, Cherniack AD, et al. An integrated TCGA pan-cancer clinical data resource to drive high-quality survival outcome analytics. Cell. 2018;173:400-16.e11.
Bhattacharya S, Dunn P, Thomas CG, Smith B, Schaefer H, Chen J, et al. ImmPort, towards repurposing of open access immunological assay data for translational and clinical research. Sci Data. 2018;5:180015.
Breuer K, Foroushani AK, Laird MR, Chen C, Sribnaia A, Lo R, et al. InnateDB: systems biology of innate immunity and beyond-recent updates and continuing curation. Nucleic Acids Res. 2013;41(Database issue):D1228-33.
Friedrich M, Wiedemann K, Reiche K, Puppel SH, Pfeifer G, Zipfel I, et al. The role of lncRNAs TAPIR-1 and -2 as diagnostic markers and potential therapeutic targets in prostate cancer. Cancers (Basel). 2020;12:1122.
Barrett T, Wilhite SE, Ledoux P, Evangelista C, Kim IF, Tomashevsky M, et al. NCBI GEO: archive for functional genomics data sets-update. Nucleic Acids Res. 2013;41(Database issue):D991-5.
Liu CJ, Hu FF, Xia MX, Han L, Zhang Q, Guo AY. GSCALite: a web server for gene set cancer analysis. Bioinformatics. 2018;34:3771-2.
Warde-Farley D, Donaldson SL, Comes O, Zuberi K, Badrawi R, Chao P, et al. The GeneMANIA prediction server: biological network integration for gene prioritization and predicting gene function. Nucleic Acids Res. 2010;38(Web Server issue): W214-20.
Paraskevopoulou MD, Vlachos IS, Karagkouni D, Georgakilas G, Kanellos I, Vergoulis T, et al. DIANA-LncBase v2: indexing microRNA targets on non-coding transcripts. Nucleic Acids Res. 2016;44(D1):D231-8.
Han H, Cho JW, Lee S, Yun A, Kim H, Bae D, et al. TRRUST v2: an expanded reference database of human and mouse transcriptional regulatory interactions. Nucleic Acids Res. 2018;46(D1):D380-6.
Sticht C, De La Torre C, Parveen A, Gretz N. miRWalk: An online resource for prediction of microRNA binding sites. PLoS One. 2018;13:e0206239.
Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci U S A. 2005;102:15545-50.
Liberzon A, Subramanian A, Pinchback R, Thorvaldsdóttir H, Tamayo P, Mesirov JP. Molecular signatures database (MSigDB) 3.0. Bioinformatics. 2011;27:1739-40.
Zeng D, Ye Z, Shen R, Yu G, Wu J, Xiong Y, et al. IOBR: Multi-Omics Immuno-Oncology Biological Research to Decode Tumor Microenvironment and Signatures. Front Immunol. 2021;12:687975.
Charoentong P, Finotello F, Angelova M, Mayer C, Efremova M, Rieder D, et al. Pan-cancer immunogenomic analyses reveal genotype-immunophenotype relationships and predictors of response to checkpoint blockade. Cell Rep. 2017;18:248-62.
Aran D, Hu Z, Butte AJ. xCell: digitally portraying the tissue cellular heterogeneity landscape. Genome Biol. 2017;18:220.
Zehir A, Benayed R, Shah RH, Syed A, Middha S, Kim HR, et al. Mutational landscape of metastatic cancer revealed from prospective clinical sequencing of 10,000 patients. Nat Med. 2017;23:703-13.
Bonneville R, Krook MA, Kautto EA, Miya J, Wing MR, Chen HZ, et al. Landscape of microsatellite instability across 39 cancer types. JCO Precis Oncol 2017;2017:PO.17.00073.
Mitsopoulos C, Di Micco P, Fernandez EV, Dolciami D, Holt E, Mica IL, et al. canSAR: update to the cancer translational research and drug discovery knowledgebase. Nucleic Acids Res. 2021;49(D1):D1074-82.
Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 2003;13:2498-504.
Zi H, He SH, Leng XY, Xu XF, Huang Q, Weng H, et al. Global, regional, and national burden of kidney, bladder, and prostate cancers and their attributable risk factors, 1990-2019. Mil Med Res. 2021;8:60.
Teo MY, Rathkopf DE, Kantoff P. Treatment of advanced prostate cancer. Annu Rev Med. 2019;70:479-99.
Weiner AB, Matulewicz RS, Eggener SE, Schaeffer EM. Increasing incidence of metastatic prostate cancer in the United States (2004-2013). Prostate Cancer Prostatic Dis. 2016;19:395-7.
Brahmer JR, Drake CG, Wollner I, Powderly JD, Picus J, Sharfman WH, et al. Phase I study of single-agent anti-programmed death-1 (MDX-1106) in refractory solid tumors: safety, clinical activity, pharmacodynamics, and immunologic correlates. J Clin Oncol. 2010;28:3167-75.
Pound CR, Partin AW, Eisenberger MA, Chan DW, Pearson JD, Walsh PC. Natural history of progression after PSA elevation following radical prostatectomy. JAMA. 1999;281:1591-7.
Van den Broeck T, van den Bergh RCN, Arfi N, Gross T, Moris L, Briers E, et al. Prognostic value of biochemical recurrence following treatment with curative intent for prostate cancer: a systematic review. Eur Urol. 2019;75:967-87.
Hanahan D, Weinberg RA. Hallmarks of cancer: The next generation. Cell. 2011;144:646-74.
Black M, Barsoum IB, Truesdell P, Cotechini T, Macdonald-Goodfellow SK, Petroff M, et al. Activation of the PD-1/PD-L1 immune checkpoint confers tumor cell chemoresistance associated with increased metastasis. Oncotarget. 2016;7:10557-67.
So T, Ishii N. The TNF-TNFR family of co-signal molecules. Adv Exp Med Biol. 2019;1189:53-84.
Worbs T, Hammerschmidt SI, Förster R. Dendritic cell migration in health and disease. Nat Rev Immunol. 2017;17:30-48.
Lei X, Lei Y, Li JK, Du WX, Li RG, Yang J, et al. Immune cells within the tumour microenvironment: Biological functions and roles in cancer immunotherapy. Cancer Lett. 2020;470:126-33.
Abida W, Cheng ML, Armenia J, Middha S, Autio KA, Vargas HA, et al. Analysis of the prevalence of microsatellite instability in prostate cancer and response to immune checkpoint blockade. JAMA Oncol. 2019;5:471-8.
Contributed Indexing:
Keywords: immune-related gene prognostic index; progress free survival; prostate cancer; tumour immune microenvironment
Entry Date(s):
Date Created: 20220310 Date Completed: 20220523 Latest Revision: 20220618
Update Code:
20240104
DOI:
10.1111/imm.13466
PMID:
35271752
Czasopismo naukowe
We developed an immune-related gene prognostic index (IGPI) associated with progression and provided new insights into the tumour immune microenvironment (TIME) for prostate cancer (PCA) patients undergoing radical prostatectomy. All analyses were conducted with R software (version 3.6.3) and its suitable packages. Meta-analysis was performed with STATA 16.0. TUBB3, WDR62 and PPARGC1A were finally identified to establish the IGPI score. The IGPI score increased with the augment of the Gleason score and T stage, as well as biochemical recurrence (BCR) and prostate specific antigen (PSA). Patients with a higher IGPI score were at a higher risk of progress (HR: 2·88; 95%CI: 95%CI: 1·80-4·61). Gene set enrichment analysis indicated that patients in high-risk group were positively associated with mismatch repair, cell cycle, DNA replication, base excision repair, nucleotide excision repair, homologous recombination and pyrimidine metabolism. We observed that patients in the high-risk group had significantly higher tumour mutation burden score and microsatellite instability score than those in the low-risk group. For analysis of immune checkpoint, ADORA2A, CD80, TNFRSF4, TNFRSF18 and TNFRSF25 were differentially expressed between no progress and progress groups and were significantly associated with progress free survival. We observed positive correlations between the IGPI score and lymphoid immune cells, macrophages M2 and immune score, while negative association between the IGPI score and dendritic cells, fibroblasts, stromal score and microenvironment score. In conclusion, the IGPI score constructed in this study might serve as an independent risk factor associated with PCA progression. ADORA2A, CD80, TNFRSF4, TNFRSF18 and TNFRSF25 might be the potential targets in the treatment of PCA.
(© 2022 John Wiley & Sons Ltd.)
Zaloguj się, aby uzyskać dostęp do pełnego tekstu.

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies