Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Sequential IVM by CNP preincubation and cooperating of PGE2 with AREG enhances developmental competence of SCNT reconstructs in goat.

Tytuł:
Sequential IVM by CNP preincubation and cooperating of PGE2 with AREG enhances developmental competence of SCNT reconstructs in goat.
Autorzy:
Assareh N; Department of Biology, Faculty of Science and Technology, ACECR Institute of Higher Education (Isfahan), Isfahan, Iran.; Department of Animal Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran.
Shahemabadi M; Department of Biology, Faculty of Science and Technology, ACECR Institute of Higher Education (Isfahan), Isfahan, Iran.; Department of Animal Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran.
Varnosfaderani SR; Department of Animal Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran.
Jafarpour F; Department of Animal Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran.
Hajian M; Department of Animal Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran. .
Nasr-Esfahani MH; Department of Biology, Faculty of Science and Technology, ACECR Institute of Higher Education (Isfahan), Isfahan, Iran. .; Department of Animal Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran. .
Źródło:
Scientific reports [Sci Rep] 2022 Mar 10; Vol. 12 (1), pp. 4243. Date of Electronic Publication: 2022 Mar 10.
Typ publikacji:
Journal Article; Research Support, Non-U.S. Gov't
Język:
English
Imprint Name(s):
Original Publication: London : Nature Publishing Group, copyright 2011-
MeSH Terms:
Cumulus Cells*/metabolism
In Vitro Oocyte Maturation Techniques*
Amphiregulin/metabolism ; Animals ; Blastocyst/metabolism ; Dinoprostone/metabolism ; Dinoprostone/pharmacology ; Embryonic Development ; Female ; Fertilization in Vitro/veterinary ; Goats ; Oocytes/metabolism ; Pregnancy
References:
Cha, K. Y. et al. Pregnancy after in vitro fertilization of human follicular oocytes collected from nonstimulated cycles, their culture in vitro and their transfer in a donor oocyte program. Fertil. Steril. 55(1), 109–113 (1991). (PMID: 198695010.1016/S0015-0282(16)54068-0)
Gilchrist, R. B. Recent insights into oocyte–follicle cell interactions provide opportunities for the development of new approaches to in vitro maturation. Reprod. Fertil. Dev. 23(1), 23–31 (2010). (PMID: 10.1071/RD10225)
Tajima, K. et al. Role of granulosa and theca cell interactions in ovarian follicular maturation. Microsc. Res. Tech. 69(6), 450–458 (2006). (PMID: 1671866710.1002/jemt.20304)
Zhang, J. et al. Granulosa cell-conditioned medium enhances steroidogenic competence of buffalo (Bubalus bubalis) theca cells. In Vitro Cell. Dev. Biol. Anim. 56(9), 799–807 (2020). (PMID: 3300038510.1007/s11626-020-00509-7)
Zhang, Y., Yan, Z., Qin, Q., Nisenblat, V., Yu, Y., Wang, T., et al. Transcriptome landscape of human oocytes and granulosa cells throughout folliculogenesis. bioRxiv 72(6), 1021–1034 (2018).
Zhang, M., Su, Y.-Q., Sugiura, K., Xia, G. & Eppig, J. J. Granulosa cell ligand NPPC and its receptor NPR2 maintain meiotic arrest in mouse oocytes. Science 330(6002), 366–369 (2010). (PMID: 20947764305654210.1126/science.1193573)
De Cesaro, M. et al. Natriuretic peptide system regulation in granulosa cells during follicle deviation and ovulation in cattle. Reprod. Domest. Anim. 53(3), 710–717 (2018). (PMID: 2953712110.1111/rda.13161)
Oberlender, G. et al. Role of insulin-like growth factor-I and follicular fluid from ovarian follicles with different diameters on porcine oocyte maturation and fertilization in vitro. Theriogenology 80(4), 319–327 (2013). (PMID: 2368369010.1016/j.theriogenology.2013.04.018)
Zhao, X. et al. Brain-derived neurotrophic factor (BDNF) is expressed in buffalo (Bubalus bubalis) ovarian follicles and promotes oocyte maturation and early embryonic development. Theriogenology 130, 79–88 (2019). (PMID: 3087784610.1016/j.theriogenology.2019.02.020)
Rouhollahi Varnosfaderani, S., Hajian, M., Jafarpour, F., Ghazvini Zadegan, F. & Nasr-Esfahani, M. H. Granulosa secreted factors improve the developmental competence of cumulus oocyte complexes from small antral follicles in sheep. PLoS ONE 15(3), e0229043 (2020). (PMID: 32182244707780910.1371/journal.pone.0229043)
Choi, Y. et al. Coordinated regulation among progesterone, prostaglandins, and EGF-like factors in human ovulatory follicles. J. Clin. Endocrinol. Metab. 102(6), 1971–1982 (2017). (PMID: 28323945547077310.1210/jc.2016-3153)
Blaha, M., Nemcova, L., Kepkova, K. V., Vodicka, P. & Prochazka, R. Gene expression analysis of pig cumulus-oocyte complexes stimulated in vitro with follicle stimulating hormone or epidermal growth factor-like peptides. Reprod. Biol. Endocrinol. 13(1), 1–17 (2015). (PMID: 25567742429381610.1186/1477-7827-13-1)
Takahashi, T., Morrow, J. D., Wang, H. & Dey, S. K. Cyclooxygenase-2-derived prostaglandin E2 directs oocyte maturation by differentially influencing multiple signaling pathways. J. Biol. Chem. 281(48), 37117–37129 (2006). (PMID: 1702342610.1074/jbc.M608202200)
Ben-Ami, I. et al. PGE2 up-regulates EGF-like growth factor biosynthesis in human granulosa cells: New insights into the coordination between PGE2 and LH in ovulation. Mol. Hum. Reprod. 12(10), 593–599 (2006). (PMID: 1688807610.1093/molehr/gal068)
Duffy, D. M. & Stouffer, R. L. Follicular administration of a cyclooxygenase inhibitor can prevent oocyte release without alteration of normal luteal function in rhesus monkeys. Hum. Reprod. 17(11), 2825–2831 (2002). (PMID: 1240703310.1093/humrep/17.11.2825)
Yamashita, Y. et al. Positive feedback loop between prostaglandin E2 and EGF-like factors is essential for sustainable activation of MAPK3/1 in cumulus cells during in vitro maturation of porcine cumulus oocyte complexes. Biol. Reprod. 85(5), 1073–1082 (2011). (PMID: 2177814310.1095/biolreprod.110.090092)
Arosh, J. et al. Effect of interferon-τ on prostaglandin biosynthesis, transport, and signaling at the time of maternal recognition of pregnancy in cattle: Evidence of polycrine actions of prostaglandin E2. Endocrinology 145(11), 5280–5293 (2004). (PMID: 1530860710.1210/en.2004-0587)
Xi, G. et al. Natriuretic peptide receptor 2 (NPR2) localized in bovine oocyte underlies a unique mechanism for C-type natriuretic peptide (CNP)-induced meiotic arrest. Theriogenology 106, 198–209 (2018). (PMID: 2908047810.1016/j.theriogenology.2017.09.003)
Santiquet, N., Papillon-Dion, É., Djender, N., Guillemette, C. & Richard, F. J. New elements in the C-type natriuretic peptide signaling pathway inhibiting swine in vitro oocyte meiotic resumption. Biol. Reprod. 91(1), 16 (2014). (PMID: 2489957210.1095/biolreprod.113.114132)
Franciosi, F. et al. Natriuretic peptide precursor C delays meiotic resumption and sustains gap junction-mediated communication in bovine cumulus-enclosed oocytes. Biol. Reprod. 91(3), 61 (2014). (PMID: 2507868110.1095/biolreprod.114.118869)
Zhang, J., Wei, Q., Cai, J., Zhao, X. & Ma, B. Effect of C-type natriuretic peptide on maturation and developmental competence of goat oocytes matured in vitro. PLoS ONE 10(7), e0132318 (2015). (PMID: 26151446451126810.1371/journal.pone.0132318)
Botigelli, R. C. et al. Supplementing in vitro embryo production media by NPPC and sildenafil affect the cytoplasmic lipid content and gene expression of bovine cumulus-oocyte complexes and embryos. Reprod. Biol. 18(1), 66–75 (2018). (PMID: 2936140810.1016/j.repbio.2018.01.004)
Bézaire, V. & Langin, D. Regulation of adipose tissue lipolysis revisited: Symposium on ‘Frontiers in adipose tissue biology’. Proc. Nutr. Soc. 68(4), 350–360 (2009). (PMID: 1969820510.1017/S0029665109990279)
Guo, Y., Cordes, K. R., Farese, R. V. Jr. & Walther, T. C. Lipid droplets at a glance. J. Cell Sci. 122(6), 749–752 (2009). (PMID: 19261844271442410.1242/jcs.037630)
Mucci, N. et al. Effect of estrous cow serum during bovine embryo culture on blastocyst development and cryotolerance after slow freezing or vitrification. Theriogenology 65(8), 1551–1562 (2006). (PMID: 1622988310.1016/j.theriogenology.2005.08.020)
Barcelo-Fimbres, M. & Seidel, G. Jr. Effects of either glucose or fructose and metabolic regulators on bovine embryo development and lipid accumulation in vitro. Mol. Reprod. Dev. Inc. Gamete Res. 74(11), 1406–1418 (2007). (PMID: 10.1002/mrd.20700)
Borges, E. D. & Vireque, A. A. Updating the impact of lipid metabolism modulation and lipidomic profiling on oocyte cryopreservation. EMJ 4(1), 79–87 (2019).
Sanchez, F. et al. Biphasic in vitro maturation (CAPA-IVM) specifically improves the developmental capacity of oocytes from small antral follicles. J. Assist. Reprod. Genet. 36(10), 2135–2144 (2019). (PMID: 31399916682341110.1007/s10815-019-01551-5)
Blaha, M., Prochazka, R., Adamkova, K., Nevoral, J. & Nemcova, L. Prostaglandin E2 stimulates the expression of cumulus expansion-related genes in pigs: The role of protein kinase B. Prostaglandins Other Lipid Mediat. 130, 38–46 (2017). (PMID: 2838937010.1016/j.prostaglandins.2017.04.001)
Pandey, S. et al. Comparative analysis of developmental and molecular correlates of developmental competence of buffalo oocytes derived from small and large follicles. Indian J. Anim. Sci. 87, 1194–1199 (2017).
Gilchrist, R. B., Lane, M. & Thompson, J. G. Oocyte-secreted factors: regulators of cumulus cell function and oocyte quality. Hum. Reprod. Update 14(2), 159–177 (2008). (PMID: 1817578710.1093/humupd/dmm040)
Oskouei, B. S. et al. Evaluation of mouse oocyte in vitro maturation developmental competency in dynamic culture systems by design and construction of a lab on a chip device and its comparison with conventional culture system. Cell J. (Yakhteh) 18(2), 205 (2016).
Dos Santos, J. T. et al. Luteinizing hormone upregulates NPPC and downregulates NPR3 mRNA abundance in bovine granulosa cells through activation of the EGF receptor. Theriogenology 119, 28–34 (2018). (PMID: 2996016410.1016/j.theriogenology.2018.06.012)
Soto-Heras, S., Paramio, M.-T. & Thompson, J. G. Effect of pre-maturation with C-type natriuretic peptide and 3-isobutyl-1-methylxanthine on cumulus-oocyte communication and oocyte developmental competence in cattle. Anim. Reprod. Sci. 202, 49–57 (2019). (PMID: 3077210410.1016/j.anireprosci.2019.01.007)
Lafontan, M. & Langin, D. Lipolysis and lipid mobilization in human adipose tissue. Prog. Lipid Res. 48(5), 275–297 (2009). (PMID: 1946431810.1016/j.plipres.2009.05.001)
Fu, X.-W. et al. Positive effects of Forskolin (stimulator of lipolysis) treatment on cryosurvival of in vitro matured porcine oocytes. Theriogenology 75(2), 268–275 (2011). (PMID: 2118728010.1016/j.theriogenology.2010.08.013)
Aizawa, R. et al. Synthesis and maintenance of lipid droplets are essential for mouse preimplantation embryonic development. Development 146(22), dev181925 (2019). (PMID: 3177203110.1242/dev.181925)
Smirnova, E. et al. ATGL has a key role in lipid droplet/adiposome degradation in mammalian cells. EMBO Rep. 7(1), 106–113 (2006). (PMID: 1623992610.1038/sj.embor.7400559)
Sastre, D. et al. Expression of PLIN2 and PLIN3 during oocyte maturation and early embryo development in cattle. Theriogenology 81(2), 326–331 (2014). (PMID: 2421066910.1016/j.theriogenology.2013.10.002)
Zhang, R. et al. Expression of perilipin 2 (PLIN 2) in porcine oocytes during maturation. Reprod. Domest. Anim. 49(5), 875–880 (2014). (PMID: 2513198810.1111/rda.12386)
Al Darwich, A. et al. Effect of different culture systems on adipocyte differentiation-related protein (ADRP) in bovine embryos. Anim. Reprod. Sci. 145(3–4), 105–113 (2014). (PMID: 2456067010.1016/j.anireprosci.2014.01.010)
Schwarz, K. R. et al. The role of cGMP as a mediator of lipolysis in bovine oocytes and its effects on embryo development and cryopreservation. PLoS ONE 13(1), e0191023 (2018). (PMID: 29360833577967110.1371/journal.pone.0191023)
Marei, W. F., Abayasekara, D. R. E., Wathes, D. C. & Fouladi-Nashta, A. A. Role of PTGS2-generated PGE2 during gonadotrophin-induced bovine oocyte maturation and cumulus cell expansion. Reprod. Biomed. Online 28(3), 388–400 (2014). (PMID: 2444795710.1016/j.rbmo.2013.11.005)
Hao, X. et al. Epidermal growth factor-mobilized intracellular calcium of cumulus cells decreases natriuretic peptide receptor 2 affinity for natriuretic peptide type C and induces oocyte meiotic resumption in the mouse. Biol. Reprod. 95(2), 45 (2016). (PMID: 2733506910.1095/biolreprod.116.140137)
Boruszewska, D. et al. Prostaglandin E 2 affects in vitro maturation of bovine oocytes. Reprod. Biol. Endocrinol. 18, 1–19 (2020). (PMID: 10.1186/s12958-020-00598-9)
Procházka, R., Petlach, M., Nagyová, E. & Nemcová, L. Effect of epidermal growth factor-like peptides on pig cumulus cell expansion, oocyte maturation, and acquisition of developmental competence in vitro: Comparison with gonadotropins. Reproduction 141(4), 425 (2011). (PMID: 2123952710.1530/REP-10-0418)
Albuz, F. et al. Simulated physiological oocyte maturation (SPOM): A novel in vitro maturation system that substantially improves embryo yield and pregnancy outcomes. Hum. Reprod. 25(12), 2999–3011 (2010). (PMID: 2087068210.1093/humrep/deq246)
Sudiman, J. et al. Effects of differing oocyte-secreted factors during mouse in vitro maturation on subsequent embryo and fetal development. J. Assist. Reprod. Genet. 31(3), 295–306 (2014). (PMID: 24408183394707510.1007/s10815-013-0152-5)
Richani, D., Ritter, L., Thompson, J. & Gilchrist, R. Mode of oocyte maturation affects EGF-like peptide function and oocyte competence. MHR Basic Sci. Reprod. Med. 19(8), 500–509 (2013). (PMID: 10.1093/molehr/gat028)
Habibi, R. et al. Functional characterization of NANOG in goat pre-implantation embryonic development. Theriogenology 120, 33–39 (2018). (PMID: 3009237210.1016/j.theriogenology.2018.07.023)
Hosseini, S. et al. Chemically assisted somatic cell nuclear transfer without micromanipulator in the goat: Effects of demecolcine, cytochalasin-B, and MG-132 on the efficiency of a manual method of oocyte enucleation using a pulled Pasteur pipette. Anim. Reprod. Sci. 158, 11–18 (2015). (PMID: 2595620110.1016/j.anireprosci.2015.04.002)
Wei, D. et al. Frozen versus fresh single blastocyst transfer in ovulatory women: A multicentre, randomised controlled trial. Lancet 393(10178), 1310–1318 (2019). (PMID: 3082778410.1016/S0140-6736(18)32843-5)
Jahromi, B. N., Mosallanezhad, Z., Matloob, N., Davari, M. & Ghobadifar, M. A. The potential role of granulosa cells in the maturation rate of immature human oocytes and embryo development: A co-culture study. Clin. Exp. Reprod. Med. 42(3), 111 (2015). (PMID: 26473111460429410.5653/cerm.2015.42.3.111)
Sánchez, F. et al. An improved IVM method for cumulus-oocyte complexes from small follicles in polycystic ovary syndrome patients enhances oocyte competence and embryo yield. Hum. Reprod. 32(10), 2056–2068 (2017). (PMID: 2893874410.1093/humrep/dex262)
Sanchez, T. et al. Combined noninvasive metabolic and spindle imaging as potential tools for embryo and oocyte assessment. Hum. Reprod. 34(12), 2349–2361 (2019). (PMID: 31812992693672410.1093/humrep/dez210)
Vuong, L. N. et al. Live births after oocyte in vitro maturation with a prematuration step in women with polycystic ovary syndrome. J. Assist. Reprod. Genet. 37(2), 347–357 (2020). (PMID: 31902102705667810.1007/s10815-019-01677-6)
Richani, D., Dunning, K. R., Thompson, J. G. & Gilchrist, R. B. Metabolic co-dependence of the oocyte and cumulus cells: Essential role in determining oocyte developmental competence. Hum. Reprod. Update 27(1), 27–47 (2021). (PMID: 3302082310.1093/humupd/dmaa043)
Zhao, Y. et al. Capacitation IVM improves cumulus function and oocyte quality in minimally stimulated mice. J. Assist. Reprod. Genet. 37(1), 77–88 (2020). (PMID: 3166770010.1007/s10815-019-01610-x)
Hajian, M., Jafarpour, F., Aghamiri, S. M., Varnosfaderani, S. R. & Esfahani, M. H. N. Effects of ovary storage temperature and embryo vitrification on somatic cell nuclear transfer outcomes in goats. Reprod. Fertil. Dev. 32(4), 419–424 (2020). (PMID: 3181627210.1071/RD18529)
Nagao, Y. et al. Antioxidant treatment during preservation of bovine ovaries increased the development potential of embryos. Zygote 18(4), 315–321 (2010). (PMID: 2044431110.1017/S0967199409990384)
Azari-Dolatabad, N. et al. Effects of cilostamide and/or forskolin on the meiotic resumption and development competence of growing ovine oocytes selected by brilliant cresyl blue staining. Theriogenology 85(8), 1483–1490 (2016). (PMID: 2687999810.1016/j.theriogenology.2016.01.008)
Romek, M., Gajda, B., Krzysztofowicz, E., Kepczynski, M. & Smorag, Z. New technique to quantify the lipid composition of lipid droplets in porcine oocytes and pre-implantation embryos using Nile Red fluorescent probe. Theriogenology 75(1), 42–54 (2011). (PMID: 2083342410.1016/j.theriogenology.2010.06.040)
Hosseini, S., Moulavi, F. & Nasr-Esfahani, M. A novel method of somatic cell nuclear transfer with minimum equipment. In Cell Reprogramming (eds. Verma, P. J. & Sumer, H.) 169–188 (Springer, 2015).
Wang, L.-J. et al. Defined media optimization for in vitro culture of bovine somatic cell nuclear transfer (SCNT) embryos. Theriogenology 78(9), 2110–2119 (2012). (PMID: 2311095410.1016/j.theriogenology.2012.03.011)
Shirazi, A. et al. The effect of the duration of in vitro maturation (IVM) on parthenogenetic development of ovine oocytes. Avicenna J. Med. Biotechnol. 1(3), 181 (2009). (PMID: 234082353558135)
Shin, S. T. et al. Laparoscopy vs laparotomy for embryo transfer to produce transgenic goats (Capra hircus). J. Vet. Sci. 9(1), 103–107 (2008). (PMID: 18296894283910410.4142/jvs.2008.9.1.103)
Substance Nomenclature:
0 (Amphiregulin)
K7Q1JQR04M (Dinoprostone)
Entry Date(s):
Date Created: 20220311 Date Completed: 20220426 Latest Revision: 20221022
Update Code:
20240104
PubMed Central ID:
PMC8913792
DOI:
10.1038/s41598-022-08238-5
PMID:
35273320
Czasopismo naukowe
Developmental competence of in vitro matured cumulus oocyte complexes (COCs) in conventional IVM (C.IVM) is lower than in vivo maturated COCs and is related to unsynchronized nuclear and cytoplasmic maturation. To overcome this dearth, COCs can be exposed to granulosa secreted factors in a two-step system. Therefore, in the first experiment, 1000 nM of C-type natriuretic peptide for 8 h was determined (CAPA), as the best time and concentration to retain oocytes in germinal vesicle stage. This condition, also reduces lipid droplets and increases the expression of ATGL and PLIN2 involved in lipolysis and lipogenesis, respectively. In the second experiment, maturation was stimulated with prostaglandin E2 and amphiregulin for 18 h (CAPA-IVM), and their optimal concentrations based on blastocyst formation rates through in vitro fertilization (IVF) were determined as 1 and 600 nM, respectively. In the third experiment, the in vitro and in vivo developmental competency of SCNT embryos in CAPA-IVM group were determined. Despite similar blastocyst formation rates in IVF and SCNT between CAPA-IVM and C.IVM, the quality of blastocysts were quality was higher in CAPA-IVM, which reflected itself, as higher ICM/TE ratio and also expression of NANOG in SCNT blastocysts. Pregnancy rate, live births rate and SCNT efficiency were not significant between CAPA-IVM and C.IVM groups. Therefore, CAPA-IVM can improve the developmental competency of SCNT derived embryos.
(© 2022. The Author(s).)
Zaloguj się, aby uzyskać dostęp do pełnego tekstu.

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies