Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Base excision-initiated terminal deoxynucleotide transferase-assisted amplification for simultaneous detection of multiple DNA glycosylases.

Tytuł:
Base excision-initiated terminal deoxynucleotide transferase-assisted amplification for simultaneous detection of multiple DNA glycosylases.
Autorzy:
Sun Y; School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai, 201203, China.
Zang L; School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai, 201203, China.
Lu J; School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai, 201203, China. .
Źródło:
Analytical and bioanalytical chemistry [Anal Bioanal Chem] 2022 May; Vol. 414 (11), pp. 3319-3327. Date of Electronic Publication: 2022 Mar 12.
Typ publikacji:
Journal Article
Język:
English
Imprint Name(s):
Original Publication: Heidelberg : Springer-Verlag, 2002-
MeSH Terms:
DNA Nucleotidylexotransferase*
Uracil-DNA Glycosidase*/analysis
DNA Repair ; DNA-Directed DNA Polymerase ; HeLa Cells ; Humans
References:
Hoeijmakers JHJ. Genome maintenance mechanisms for preventing cancer. Nature. 2001;411:366–74. (PMID: 11357144)
Drohat AC, Coey CT. Role of base excision “repair” enzymes in erasing epigenetic marks from DNA. Chem Rev. 2016;116(20):12711–29. (PMID: 275010785299066)
Hedglin M, O’Brien PJ. Human alkyladenine DNA glycosylase employs a processive search for DNA damage. Biochemistry. 2008;47(44):11434–45. (PMID: 18839966)
Prorok P, Alili D, Saint-Pierre C, Gasparutto D, Zharkov DO, Ishchenko AA, Tudek B, Saparbaev MK. Uracil in duplex DNA is a substrate for the nucleotide incision repair pathway in human cells. Proc Natl Acad Sci USA. 2013;110(39):E3695–703. (PMID: 240230643785768)
Stivers JT, Jiang YL. A mechanistic perspective on the chemistry of DNA repair glycosylases. Chem Rev. 2003;103(7):2729–59. (PMID: 12848584)
Dalhus B, Laerdahl JK, Backe PH, Bjøras M. DNA base repair-recognition and initiation of catalysis. FEMS Microbiol Rev. 2009;33(6):1044–78. (PMID: 19659577)
Dusseau C, Murray GI, Keenan RA, O’Kelly T, Krokan HE, Mcleod HL. Analysis of uracil DNA glycosylase in human colorectal cancer. Int J Oncol. 2001;18(2):393–9. (PMID: 11172609)
Jong P, Lan C, Tockman MS, Abul E, Philip L. The human 8-oxoguanine DNA N-glycosylase 1 (hOGG1) DNA repair enzyme and its association with lung cancer risk. Pharmacogenetics. 2004;14(2):103–9.
Li D, Zhang W, Zhu J, Chang P, Sahin A, Singletary E, Bondy M, Hazra T, Mitra S, Lau SS. Oxidative DNA damage and 8-hydroxy-2-deoxyguanosine DNA glycosylase/apurinic lyase in human breast cancer. Mol Carcinogen. 2010;31(4):214–23.
Karihtala P, Kauppila S, Puistola U, Jukkola-Vuorinen A. Absence of the DNA repair enzyme human 8-oxoguanine glycosylase is associated with an aggressive breast cancer phenotype. Brit J Cancer. 2012;106(2):344–7. (PMID: 22108520)
Imam SZ, Karahalil B, Hogue BA, Souza-Pinto NC, Bohr VA. Mitochondrial and nuclear DNA-repair capacity of various brain regions in mouse is altered in an age-dependent manner. Neurobiol Aging. 2006;27(8):1129–36. (PMID: 16005114)
Chen D, Cao G, Hastings T, Feng Y, Pei W, O’Horo C, Chen J. Age-dependent decline of DNA repair activity for oxidative lesions in rat brain mitochondria. J Neurochem. 2010;81(6):1273–8.
Tchou J, Kasai H, Shibutani S, Chung MH, Laval J, Grollman AP, Nishimura S. 8-Oxoguanine (8-hydroxyguanine) DNA glycosylase and its substrate specificity. Proc Natl Acad Sci USA. 1991;88(11):4690–4. (PMID: 205255251731)
Verjat T, Dhénaut A, Radicella JP, Araneda S. Detection of 8-oxoG DNA glycosylase activity and OGG1 transcripts in the rat CNS. Mutation Res. 2000;460(2):127–38. (PMID: 10882853)
Arenaz P, Sirover MA. Isolation and characterization of monoclonal antibodies directed against the DNA repair enzyme uracil DNA glycosylase from human placenta. Proc Natl Acad Sci USA. 1983;80(19):5822–6. (PMID: 6577457390167)
Gackowski D, Speina E, Zielinska M, Kowalewski J, Olinski R. Products of oxidative DNA damage and repair as possible biomarkers of susceptibility to lung cancer. Cancer Res. 2003;63(16):4899–902. (PMID: 12941813)
Darwanto A, Farrel A, Rogstad DK, Sowers LC. Characterization of DNA glycosylase activity by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Anal Biochem. 2009;394(1):13–23. (PMID: 196078003990469)
Huaijun N, Wei W, Wang L, Zhou N, Shouzhuo Y. A colorimetric and smartphone readable method for uracil-DNA glycosylase detection based on the target-triggered formation of G-quadruplex. Analyst. 2015;140(8):2771–7.
Liu H, Lou Y, Zhou F, Zhu H, Abdel-Halim ES, Zhu JJ. An amplified electrochemical strategy using DNA-QDs dendrimer superstructure for the detection of thymine DNA glycosylase activity. Biosens Bioelectron. 2015;71:249–55. (PMID: 25913445)
Liu T, Li Z, Chen M, Zhao H, Zheng Z, Cui L, Zhang X. Sensitive electrochemical biosensor for Uracil-DNA glycosylase detection based on self-linkable hollow Mn/Ni layered doubled hydroxides as oxidase-like nanozyme for cascade signal amplification. Biosens Bioelectron. 2021;194:113607. (PMID: 34507096)
Huang S, Wu C, Wang Y, Yang X, Yuan R, Chai Y. Ag/TiO 2 nanocomposites as a novel SERS substrate for construction of sensitive biosensor. Sensors and Actuators B Chem. 2021;339:129843.
Zhang Y, Li Q-n, Li C-c, Zhang C-y. Label-free and high-throughput bioluminescence detection of uracil-DNA glycosylase in cancer cells through tricyclic cascade signal amplification. Chem Commun. 2018;54:6991–4.
Wu Y, Wang L, Zhu J, Jiang W. A DNA machine-based fluorescence amplification strategy for sensitive detection of uracil-DNA glycosylase activity. Biosens Bioelectron. 2015;68:654–9. (PMID: 25660509)
Zhao H, Hu W, Jing J, Zhang X. One-step G-quadruplex-based fluorescence resonance energy transfer sensing method for ratiometric detection of uracil-DNA glycosylase activity. Talanta. 2021;221:121609. (PMID: 33076139)
Wang LJ, Ma F, Tang B, Zhang C-y. Base-excision-repair-induced construction of a single quantum-dot-based sensor for sensitive detection of DNA glycosylase activity. Anal Chem. 2016;88(15):7523–9. (PMID: 27401302)
Wang LJ, Ren M, Zhang Q, Tang B, Zhang C-y. Excision repair-initiated enzyme-assisted bicyclic cascade signal amplification for ultrasensitive detection of uracil-DNA glycosylase. Anal Chem. 2017;89(8):4488–94. (PMID: 28306242)
Wang J, Wang Y, Liu S, Wang H, Zhang X, Song X, Huang J. Base excision repair initiated rolling circle amplification-based fluorescent assay for screening uracil-DNA glycosylase activity using Endo IV-assisted cleavage of AP probes. Analyst. 2018;143:3951–8. (PMID: 29999513)
Zhang X, Wu T, Wang H, Zou Y, Chen W, Zhao M, Wang S, Xiao X. A time-dependent fluorescent biosensor for uracil-DNA glycosylase detection based on the uracil inhibition effect towards archaebacterial DNA polymerases. Sensor Actuat B-Chem. 2018;270:277–82.
Zhang H, Li F, Wang L, Shao S, Chen H, Chen X. Sensitive homogeneous fluorescent detection of DNA glycosylase by target-triggering ligation-dependent tricyclic cascade amplification. Talanta. 2020;220:121422. (PMID: 32928432)
Wang LJ, Wang HX, Jiang L, Zhang CY. Development of an in vitro autocatalytic self-replication system for biosensing application. ACS Sens. 2018;3(12):2675–83. (PMID: 30460848)
Zhang Y, Li C-c, Tang B, Zhang C-y. Homogeneously sensitive detection of multiple DNA glycosylases with intrinsically fluorescent nucleotides. Anal Chem. 2017;89:7684–92. (PMID: 28621520)
Gines G, Saint-Pierre C, Gasparutto D. A multiplex assay based on encoded microbeads conjugated to DNA NanoBeacons to monitor base excision repair activities by flow cytometry. Biosens Bioelectron. 2014;58(16):81–4. (PMID: 24632132)
Hu J, Liu MH, Li Y, Tang B, Zhang C-y. Simultaneous sensitive detection of multiple DNA glycosylases from lung cancer cells at the single-molecule level. Chem Sci. 2017;9(3):712–20. (PMID: 296291405869805)
Li CC, Chen HY, Hu J, Zhang CY. Rolling circle amplification-driven encoding of different fluorescent molecules for simultaneous detection of multiple DNA repair enzymes at the single-molecule level. Chem Sci. 2020;11(22):5724–34. (PMID: 328640847433776)
Sun Y, Wang Y, Lau C, Chen G, Lu J. Hybridization-initiated exonuclease resistance strategy for simultaneous detection of multiple microRNAs. Talanta. 2018;190:248–54. (PMID: 30172506)
Yang L, Qing Z, Liu C, Tang Q, Li J, Yang S, Zheng J, Yang R, Tan W. Direct fluorescent detection of blood potassium by ion-selective formation of intermolecular G-quadruplex and ligand binding. Anal Chem. 2016;88:9285–92. (PMID: 27558922)
Takei Y, Kadomatsu K, Itoh H, Sato W, Nakazawa K, Kubota S, Muramatsu T. 5′-,3′-inverted thymidine-modified antisense oligodeoxynucleotide targeting midkine. J Biol Chem. 2002;277(26):23800–6. (PMID: 11959856)
Mol CD, Hosfield DJ, Tainer JA. Abasic site recognition by two apurinic/apyrimidinic endonuclease families in DNA base excision repair: the 3’ ends justify the means. Mutation Res. 2000;460(3–4):211–29. (PMID: 10946230)
Chen F, Bai M, Cao K, Zhao Y, Wei J, Zhao Y. Fabricating MnO 2 nanozymes as intracellular catalytic DNA circuit generators for versatile imaging of base-excision repair in living cells. Adv Funct Mater. 2017;27:1702748.
Zhang XF, Li N, Ling Y, Li NB, Luo HQ. Sensitive detection of active uracil-DNA glycosylase via an exonuclease IIIassisted cascade multi-amplification fluorescence DNA machine. Sensor Actuat B-Chem. 2018;271:9–14.
Wang L, Zhang H, Xie Y, Chen H, Ren C, Chen X. Target-mediated hyperbranched amplification for sensitive detection of human alkyladenine DNA glycosylase from HeLa cells. Talanta. 2019;194:846–51. (PMID: 30609614)
Wang X, Hou T, Lu T, Li F. Autonomous exonuclease III-assisted isothermal cycling signal amplification: a facile and highly sensitive fluorescence DNA glycosylase activity assay. Anal Chem. 2014;86(19):9626–31. (PMID: 25196303)
Hu J, Liu W, Wang J, Qiu JG, Zhang CY. Simple mix-and-read assay with multiple cyclic enzymatic repairing amplification for rapid and sensitive detection of DNA glycosylase. Anal Chem. 2021;93(18):6913–8. (PMID: 33929831)
Grant Information:
21675030 National Natural Science Foundation of China
Contributed Indexing:
Keywords: DNA glycosylase; Multiplex detection; Signal amplification; Terminal deoxynucleotidyl transferase
Substance Nomenclature:
EC 2.7.7.31 (DNA Nucleotidylexotransferase)
EC 2.7.7.7 (DNA-Directed DNA Polymerase)
EC 3.2.2.- (Uracil-DNA Glycosidase)
Entry Date(s):
Date Created: 20220312 Date Completed: 20220421 Latest Revision: 20220716
Update Code:
20240105
DOI:
10.1007/s00216-022-03978-9
PMID:
35277739
Czasopismo naukowe
Various DNA glycosylases involved in base excision repair may be associated with a wide disease spectrum that includes cancer, myocardial infarction, neurodegenerative disorders, etc. In this paper, we developed a sensitive method for simultaneous detection of multiple DNA glycosylases based on the target-initiated removal of damaged base and terminal deoxynucleotidyl transferase (TdT)-assisted labeling and signal amplification. We designed three specific stem-loop probes which contained specific targeting damaged bases in the stem for uracil DNA glycosylase (UDG), human alkyladenine DNA glycosylase (hAAG), and human 8-oxoguanine DNA glycosylase 1 (hOGG1), respectively. Target DNA glycosylase can initiate the recognition and clearance of damaged base on immobilized 3' blocked stem-loop probe, releasing apurine/apyrimidine (AP) site which can be hydrolyzed by AP endonuclease to produce 3'OH probe fragment for TdT extension. Numerous biotin-modified dUTPs were successively labeled on the 3' terminus of the probe fragments, and then reacted with streptavidin-phycoerythrin (SA-PE) for analysis by using the Luminex xMAP array platform. The amplification strategy based on TdT has been utilized to simultaneously and sensitively detect three different DNA glycosylases with detection limits of 10 -3 U/ml. Moreover, it could be applied for analyzing DNA glycosylase activity in complex HeLa cell lysate samples. Therefore, this strategy possesses the advantages of high sensitivity, specificity, and multiplex, holding great potential for DNA glycosylase-related biomedical research.
(© 2022. Springer-Verlag GmbH Germany, part of Springer Nature.)
Zaloguj się, aby uzyskać dostęp do pełnego tekstu.

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies