Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Parameter estimation in high-intensity focused ultrasound therapy.

Tytuł:
Parameter estimation in high-intensity focused ultrasound therapy.
Autorzy:
de Los Ríos Cardenas L; Bioengineering, Universidad Santiago de Cali, Cali, Colombia.
Bermeo Varon LA; Bioengineering, Universidad Santiago de Cali, Cali, Colombia.
de Albuquerque Pereira WC; Biomedical Engineering Program - COPPE, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.
Źródło:
International journal for numerical methods in biomedical engineering [Int J Numer Method Biomed Eng] 2022 May; Vol. 38 (5), pp. e3591. Date of Electronic Publication: 2022 Mar 18.
Typ publikacji:
Journal Article; Research Support, Non-U.S. Gov't
Język:
English
Imprint Name(s):
Original Publication: [Oxford, UK] : Wiley
MeSH Terms:
Extracorporeal Shockwave Therapy*
High-Intensity Focused Ultrasound Ablation*/methods
Hyperthermia, Induced/*methods
Neoplasms/*therapy
Algorithms ; Bayes Theorem ; Computer Simulation ; Humans ; Markov Chains ; Monte Carlo Method
References:
Oh KS, Han H, Yoon BD, et al. Effect of HIFU treatment on tumor targeting efficacy of docetaxel-loaded pluronic nanoparticles. Colloids Surf B Biointerfaces. 2014;119:137-144. doi:10.1016/j.colsurfb.2014.05.007.
Crouzet S, Rouviere O, Martin X, Gelet A. High-intensity focused ultrasound as focal therapy of prostate cancer. Curr Opin Urol. 2014;24(3):225-230. doi:10.1097/MOU.0000000000000053.
de Los Ríos CL, Bermeo LA, Pereira WCA. Sensitivity study in high intensity focused ultrasound therapy for cancer. IFMBE Proc. 2019;76:1337-1342. doi:10.1007/978-3-030-31635-8.
Gupta P, Srivastava A. Numerical study on the possible scanning pathways to optimize thermal impacts during multiple sonication of HIFU. IEEE Trans Biomed Eng. 2021;68(7):2117-2128. doi:10.1109/TBME.2020.3026420.
De Los Ríos CL, Bermeo Varón LA, Pereira WCA. Comparison of attenuation coefficient estimation in high intensity focused ultrasound therapy for cancer treatment by Levenberg Marquardt and Gauss-Newton methods. Commun Comput Inform Sci. 2020;1194:108-118. doi:10.1007/978-3-030-42520-3_9.
Cornelis F, Grenier N, Moonen CT, Quesson B. In vivo characterization of tissue thermal properties of the kidney during local hyperthermia induced by MR-guided high-intensity focused ultrasound. NMR Biomed. 2011;24(7):799-806. doi:10.1002/nbm.1624.
Dragonu I, de Oliveira PL, Laurent C, et al. Non-invasive determination of tissue thermal parameters from high intensity focused ultrasound treatment monitored by volumetric MRI thermometry. NMR Biomed. 2009;22(8):843-851. doi:10.1002/nbm.1397.
Fox-Neff K. Inverse Methods in Parameter Estimation for High Intensity Focused Ultrasound (HIFU). Doctoral Dissertation, Department of Mathematics, University of Cincinnati; 2015.
Carter M, Sullivan A, Byers K, Jessel M. Optimizing ultrasonic intensity for high intensity focused ultrasound therapy. Computer-Aided Engineering: Applications to Biological Processes. New York, NY: Cornell University; 2014.
Cortela GA, Pereira WCA, Negreira CA. Ex vivo determined experimental correction factor for the ultrasonic source term in the bioheat equation. Ultrasonics. 2018;82:72-78. doi:10.1016/j.ultras.2017.07.008.
Yiannakou M, Trimikliniotis M, Yiallouras C, Damianou C. Evaluation of focused ultrasound algorithms: issues for reducing pre-focal heating and treatment time. Ultrasonics. 2016;65:145-153. doi:10.1016/j.ultras.2015.10.007.
Andreeva TA, Berkovich AE, Bykov NY, Kozyrev SV, Lukin AY. High-intensity focused ultrasound: heating and destruction of biological tissue. Technical Phys. 2020;65(9):1455-1466. doi:10.1134/S1063784220090030.
Canney MS, Bailey MR, Crum LA, Khokhlova VA, Sapozhnikov OA. Acoustic characterization of high intensity focused ultrasound fields: a combined measurement and modeling approach. J Acoust Soc Am. 2008;124(4):2406-2420. doi:10.1121/1.2967836.
Maggi L, Omena T, von Krüger M, Pereira WCA. Didactic software for modeling heating patterns in tissues irradiated by therapeutic ultrasound. Rev Bras Fisioter. 2008;12(3):204-214.
Gupta P, Srivastava A. Numerical analysis of thermal response of tissues subjected to high intensity focused ultrasound. Int J Hyperthermia. 2018;35(1):419-434. doi:10.1080/02656736.2018.1506166.
Gupta P, Srivastava A. Non-Fourier transient thermal analysis of biological tissue phantoms subjected to high intensity focused ultrasound. Int J Heat Mass Transfer. 2019;136:1052-1063. doi:10.1016/j.ijheatmasstransfer.2019.03.014.
de Los Ríos CL, Bermeo LA, Pereira WCA. Parametric simulated study of high intensity focused ultrasound (HIFU) for treatment of cancer. Conf Proc Am Soc Therm Fluids Eng. 2018;3:1131-1134. doi:10.1615/tfec2018.bio.021734.
Alvarenga A, Machado J, Pereira WCA. Protocol implementation to obtain acoustic beam parameters of medical ultrasonic transducers. Rev Bras Eng Bioméd. 2001;17(3):151-163.
Jackson E, Cleveland RO, Coussios CC. The origins of nonlinear enhancement in ex vivo tissue during hig intensity focused ultrasound (HIFU) ablation. Proc Meet Acoust. 2013;19(1):1-7. doi:10.1121/1.4800011.
Jenne JW, Preusser T, Günther M. High-intensity focused ultrasound: principles, therapy guidance, simulations and applications. Z Med Phys. 2012;22(4):311-322. doi:10.1016/j.zemedi.2012.07.001.
Hu J, Ding Y, Qian S, Tang X. Simulations of adaptive temperature control with self-focused hyperthermia system for tumor treatment. Ultrasonics. 2013;53(1):171-177. doi:10.1016/j.ultras.2012.05.005.
Huang W, Horng TL. Chapter 1 - bioheat transfer and thermal heating for tumor treatment. Becker SM, Kuznetsov AV, Bioheat Transfer and Thermal Heating for Tumor Treatment. Boston: Academic Press; 2015.
Al-Bataineh O, Jenne J, Huber P. Clinical and future applications of high intensity focused ultrasound in cancer. Cancer Treat Rev. 2012;38(5):346-353. doi:10.1016/j.ctrv.2011.08.004.
Kaipio JP, Somersalo E. Statistical and Computational Inverse Problems. New York: Springer; 2005.
Das R, Prasad DK. Prediction of porosity and thermal diffusivity in a porous fin using differential evolution algorithm. Swarm Evol Comput. 2015;23:27-39. doi:10.1016/j.swevo.2015.03.001.
Das R, Mishra SC, Ajith M, Uppaluri R. An inverse analysis of a transient 2-D conduction-radiation problem using the lattice Boltzmann method and the finite volume method coupled with the genetic algorithm. J Quant Spectrosc Radiat Transfer. 2008;109(11):2060-2077. doi:10.1016/j.jqsrt.2008.01.011.
Colaço MJ, Orlande HRB, Dulikravich GS. Inverse and optimization problems in heat transfer. J Braz Soc Mech Sci Eng. 2006;XXVIII(1):1-24.
Kallrath J, Milone EF. Brief review of mathematical optimization. In: Börner G, Burkert A, Burton WB, et al., eds. Eclipsing Binary Stars: Modeling and Analysis. 2nd ed. New York: Springer; 2009:351-427.
Panda S, Das R. A golden section search method for the identification of skin subsurface abnormalities. Inverse Prob Sci Eng. 2018;26(2):183-202. doi:10.1080/17415977.2017.1310857.
Gas P. Essential facts on the history of hyperthermia and their connections with electromedicine. Przeglad Elektrotech. 2011;87(12 B):37-40.
da Costa JMJ, Orlande HRB, Campos Velho HF, et al. Estimation of tumor size evolution using particle filters. J Comput Biol. 2015;22(7):1-17. doi:10.1089/cmb.2014.0003.
Majcharzac E, Paruch M, Dziewoński M, Freus S, Freus K. Sensitivity analysis of temperature field and parameter identification in burned and healthy skin tissue. In: Muñoz-Rojas PA, ed. Computational Modeling, Optimization and Manufacturing Simulation of Advanced Engineering Materials. Switzerland: Springer International Publishing; 2016:88-112.
Lerch TP, Cepel R, Neal SP. Attenuation coefficient estimation using experimental diffraction corrections with multiple interface reflections. Ultrasonics. 2006;44(1):83-92. doi:10.1016/j.ultras.2005.07.003.
da Silva NP, Bermeo LA, da Costa JM, Orlande HRB. Monte Carlo parameter estimation and direct simulation of in vitro hyperthermia-chemotherapy experiment. Numer Heat Transfer, Part A: Appl. 2021;80(5):185-209. doi:10.1080/10407782.2021.1940009.
Kurgan E, Gas P. Estimation of temperature distribution inside tissues in external RF hyperthermia. Przegalad Elektrotechn. 2010;86(1):100-102.
Gas P, Kurgan E. Simulation of the electromagnetic field and temperature distribution in human tissue in RF hyperthermia. Przeglad Elektrotech. 2016;91(1):169-172.
Bermeo Varon LA, Orlande HRB, Elicabe G. Estimation of state variables in the hyperthermia therapy of cancer with heating imposed by radiofrequency electromagnetic waves. Int J Therm Sci. 2015;98:228-236. doi:10.1016/j.ijthermalsci.2015.06.022.
Bermeo LA, Orlande HRB, Eliçabe GE. Combined parameter and state estimation in the radiofrequency hyperthermia treatment of cancer. Heat Transfer, Part A: Appl. 2016;70(6):581-594. doi:10.1080/10407782.2016.1193342.
Ng EYK, Jamil M. Parametric sensitivity analysis of radiofrequency ablation with efficient experimental design. Int J Therm Sci. 2014;80:41-47.
Majcharzac E, Paruch M. Identification of electromagnetic field parameters assuring the cancer destruction during hyperthermia treatment. Inverse Prob Sci Eng. 2011;19(1):45-58. doi:10.1080/17415977.2010.531473.
Varon LAB, Orlande HRB, Elicabe GE. Combined parameter and state estimation problem in a complex domain: RF hyperthermia treatment using nanoparticles. J Phys: Conf Ser. 2016;745(3):032014. doi:10.1088/1742-6596/745/3/032014.
Gas P. Temperature inside tumor as time function in RF hyperthermia. Przeglad Elektrotech. 2010;86(12):42-45.
Pacheco CC, Orlande HRB, Colaço MJ, Dulikravich GS, Bermeo Varón LA, Lamien B. Real-time temperature estimation with enhanced spatial resolution during MR-guided hyperthermia therapy. Numer Heat Transfer, Part A: Appl. 2020;77(8):782-806. doi:10.1080/10407782.2020.1720409.
Gas P. Study on interstitial microwave hyperthermia with multi-slot coaxial antenna. Rev Roumaine Sci Tech. 2014;59(2):215-224.
Gas P. Optimization of multi-slot coaxial antennas for microwave thermotherapy based on the S11-parameter analysis. Biocybemet Biomed Eng. 2017;37(1):78-93.
Gas P, Miaskowski A, Subramanian M. In silico study on tumor-size-dependent thermal profiles inside an anthropomorphic female breast phantom subjected to multi-dipole antenna array. Int J Mol Sci. 2020;21(22):8597.
Lamien B, Varon LAB, Orlande HRB, Eliçabe GE. State estimation in bioheat transfer: a comparison of particle filter algorithms. Int J Numer Methods Heat Fluid Flow. 2017;27(3):615-638. doi:10.1108/HFF-03-2016-0118.
Lamien B, Orlande HRB, Bermeo Varón LA, et al. Estimation of the temperature field in laser-induced hyperthermia experiments with a phantom. Int J Hyperthermia. 2018;35(1):279-290.
Lamien B, Orlande HRB, Eliçabe GE. Particle filter and approximation error model for state estimation in hyperthermia. J Heat Transfer. 2016;139(1):012001. doi:10.1115/1.4034064.
Lamien B, Orlande HRB, Eliçabe GE. Inverse problem in the hyperthermia therapy of cancer with laser heating and plasmonic nanoparticles. Inverse Prob Sci Eng. 2017;25(4):608-631. doi:10.1080/17415977.2016.1178260.
Alaeian M, Orlande HRB, Machado J. Temperature estimation of inflamed bowel by the photoacoustic inverse approach. Int J Numer Methods Biom Eng. 2020;36(3):1-16. doi:10.1002/cnm.3300.
Patidar S, Kumar S, Srivastava A, Singh S. Dual phase lag model-based thermal analysis of tissue phantoms using lattice Boltzmann method. Int J Therm Sci. 2016;103:41-56. doi:10.1016/j.ijthermalsci.2015.12.011.
Kumar S, Srivastava A. Finite integral transform-based analytical solutions of dual phase lag bio-heat transfer equation. App Math Model. 2017;52:378-403.
Phadnis A, Kumar S. Numerical investigation of thermal response of laser-irradiated biological tissue phantoms embedded with gold nanoshells. J Therm Biol. 2016;61:16-28. doi:10.1016/j.jtherbio.2016.08.002.
Kaipio JP, Fox C. The Bayesian framework for inverse problems in heat transfer. Heat Transfer Eng. 2011;32(9):718-753. doi:10.1080/01457632.2011.525137.
Orlande HRB, Fudym F, Maillet D, Cotta RM. Thermal Measurements and Inverse Techniques. Boca Raton: CRC Press; 2017:1-770.
Gamerman D, Lopes HF. Markov Chain Monte Carlo: Stochastic Simulation for Bayesian Inference. 2nd ed. Boca Raton: Chapman and Hall/CRC; 2006.
Fox C, Nicholls G, Tan S. An Introduction to Inverse Problems. University of Auckland: Department of Mathematics; 2010.
Orlande HRB. Inverse problems in heat transfer: new trends on solution methodologies and applications. Int Heat Transfer Conf. 2011;134(3):379-398. doi:10.1115/IHTC14-23349.
França MV, Orlande HRB. Estimation of parameters of the dual-phase-lag model for heat conduction in metal-oxide-semiconductor field-effect transistors. Int Commun Heat Mass Transfer. 2018;92:107-111. doi:10.1016/j.icheatmasstransfer.2018.02.001.
Orlande HRB, Lutaif NA, Gontijo JAR. Estimation of the kidney metabolic heat generation rate. Int J Numer Methods Biomed Eng. 2019;35(9):1-19. doi:10.1002/cnm.3224.
Alaeian M, Orlande HRB. Inverse photoacoustic technique for parameter and temperature estimation in tissues. Heat Transfer Eng. 2017;38(18):1573-1594. doi:10.1080/01457632.2016.1262721.
Gordon N, Salmond D, Smith AFM. Novel approach to nonlinear and non-Gaussian Bayesian state stimation. Proc Inst Elect Eng. 1993;140(2):107-113.
Pernot M, Porquet J, Saint OC, et al. 3D finite differences simulation of coupled acoustic wave and bio-heat equations: skull heating prediction for non invasive brain HIFU therapy. In: World Congress on Ultrasonics, Paris; september, 2003:1515-1518.
Chatillon S, Loyet R, Brunel L, Chavrier F, Guillen N, Le Berre S. Applications of intensive HIFU simulation based on surrogate models using the CIVA HealthCare platform. J Phys: Conf Ser. 2021;1761(1):012007. doi:10.1088/1742-6596/1761/1/012007.
Amin V, Wu L, Roberts R, Thompson RB, Ryken T. HIFU therapy planning using pre-treatment imaging and simulation. AIP Conf Proc. 2006;829:206-210. doi:10.1063/1.2205467.
Ustbas B, Kilic D, Bozkurt A, Aribal ME, Akbulut O. Silicone-based composite materials simulate breast tissue to be used as ultrasonography training phantoms. Ultrasonics. 2018;88:9-15. doi:10.1016/j.ultras.2018.03.001.
Sparks JL, Vavalle NA, Kasting KE, et al. Use of silicone materials to simulate tissue biomechanics as related to deep tissue injury. Adv Skin Wound Care. 2015;28(2):59-68. doi:10.1097/01.ASW.0000460127.47415.6e.
Dąbrowska AK, Rotaru GM, Derler S, et al. Materials used to simulate physical properties of human skin. Skin Res Technol. 2016;22(1):3-14. doi:10.1111/srt.12235.
Datta A, Rakesh V. An Introduction to Modeling of Transport Processes (Application to Biomedical System). 1st ed. New York: Cambridge University Press; 2010.
Pennes HH. Analysis of tissue and arterial blood temperatures in the resting human forearm. J Appl Physiol. 1948;1(2):93-124.
Bermeo Varón L, Loiola B, Abreu L, et al. Thermal effect by applying laser heating in iron oxide nanoparticles dissolved in distilled water; IFMBE Proceedings. 2019;79:1239-1245. doi:10.1007/978-3-030-31635-8_151.
Guntur SR, Choi MJ. Influence of temperature-dependent thermal parameters on temperature elevation of tissue exposed to high-intensity focused ultrasound: numerical simulation. Ultrasound Med Biol. 2015;41(3):806-813. doi:10.1016/j.ultrasmedbio.2014.10.008.
Lafon C, Kaczkowski PJ, Vaezy S, Noble M & Sapozhnikov OA Development and characterization of an innovative synthetic tissue-mimicking material for high intensity focused ultrasound (HIFU) exposures. In: 2001 IEEE Ultrasonics Symposium; 2001:1295-1298.
Hasgall PA, Dig Gennaro F, Baumgartner C, et al. IT'IS database for thermal and electromagnetic parameters of biological tissues, Version 4.0; 2018. doi:10.13099/vip21000-04-0.itis.swiss/database.
Ter HG, Coussios C. High intensity focused ultrasound: physical principles and devices. Int J Hypertherm. 2007;23(2):89-104.
Ozisik MN, Orlande HRB. Inverse Heat Transfer: Fundamental and Applications. 2nd ed. New York: CRC Press; 2021.
Contributed Indexing:
Keywords: Markov Chain Monte Carlo; Metropolis-Hasting; cancer; high-intensity focused ultrasound; hyperthermia; parameter estimation
Entry Date(s):
Date Created: 20220315 Date Completed: 20220519 Latest Revision: 20220624
Update Code:
20240105
DOI:
10.1002/cnm.3591
PMID:
35289112
Czasopismo naukowe
Hyperthermia using High-Intensity Focused Ultrasound (HIFU) is an acoustic therapy for cancer treatment. This technique consists of an increase in the temperature field of the tumor to achieve coagulative necrosis and immediate cell death. Therefore, for having a successful treatment, the physical problem requires to know several properties due to the high variability from individual to individual, or even for the same individual under different physiological conditions. This article presents a numerical simulation of hyperthermia therapy for cancer treatment using HIFU, as well as the estimation of parameters that influence the physical problem. Two mathematical models were considered to solve the forward problem. The acoustic model based on acoustic pressure performs a frequency-domain study, and the bioheat transfer model a time-dependent study. These models were solved using Comsol Multiphysics® software in a 2D-axisymmetric rectangular domain to determine the temperature field. Parameter estimation was coded in Matlab Mathworks® environment using a Bayesian approach. The Markov Chain Monte Carlo method by the Metropolis-Hastings algorithm was implemented, and the simulated temperature measurements were considered. Results suggest that specific HIFU therapy can be performed for each patient by estimating appropriate parameters for cancer treatment and provides the possibility to define procedures before and during the treatment.
(© 2022 John Wiley & Sons Ltd.)
Zaloguj się, aby uzyskać dostęp do pełnego tekstu.

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies