Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Impact of green clay authigenesis on element sequestration in marine settings.

Tytuł:
Impact of green clay authigenesis on element sequestration in marine settings.
Autorzy:
Baldermann A; Institute of Applied Geosciences, Graz University of Technology, NAWI Graz Geocenter, Graz, Austria. .
Banerjee S; Department of Earth Sciences, Indian Institute of Technology Bombay, Powai, Mumbai, India.
Czuppon G; Institute for Geological and Geochemical Research, Research Centre for Astronomy and Earth Sciences, Eötvös Loránd Research Network, Budapest, Hungary.
Dietzel M; Institute of Applied Geosciences, Graz University of Technology, NAWI Graz Geocenter, Graz, Austria.
Farkaš J; Department of Earth Sciences, Metal Isotope Group (MIG), University of Adelaide, North Terrace, Adelaide, SA, Australia.
Lӧhr S; Department of Earth and Environmental Sciences, Macquarie University, Sydney, NSW, Australia.
Moser U; Institute of Applied Geosciences, Graz University of Technology, NAWI Graz Geocenter, Graz, Austria.
Scheiblhofer E; Institute of Applied Geosciences, Graz University of Technology, NAWI Graz Geocenter, Graz, Austria.
Wright NM; Earthbyte Group, School of Geosciences, University of Sydney, Sydney, NSW, Australia.
Zack T; Department of Earth Sciences, Metal Isotope Group (MIG), University of Adelaide, North Terrace, Adelaide, SA, Australia.; Department of Earth Sciences, University of Gothenburg, Göteborg, Sweden.
Źródło:
Nature communications [Nat Commun] 2022 Mar 22; Vol. 13 (1), pp. 1527. Date of Electronic Publication: 2022 Mar 22.
Typ publikacji:
Journal Article; Research Support, Non-U.S. Gov't
Język:
English
Imprint Name(s):
Original Publication: [London] : Nature Pub. Group
MeSH Terms:
Geologic Sediments*
Minerals*
Clay
References:
Raiswell, R. Towards a global highly reactive iron cycle. J. Geochem. Explor. 88, 436–439 (2006). (PMID: 10.1016/j.gexplo.2005.08.098)
Jeandel, C. & Oelkers, E. H. The influence of terrigenous particulate material dissolution on ocean chemistry and global element cycles. Chem. Geol. 395, 50–66 (2015). (PMID: 10.1016/j.chemgeo.2014.12.001)
Santiago Ramos, D. P., Morgan, L. E., Lloyd, N. S. & Higgins, J. A. Reverse weathering in marine sediments and the geochemical cycle of potassium in seawater: Insights from the K isotopic composition ( Si as a tracer of biogenic silica burial and diagenesis: major deltaic sinks in the silica cycle. Geophys. Res. Lett. 43, 7124–7132 (2016). (PMID: 10.1002/2016GL069929)
Michalopoulos, P. & Aller, R. C. Rapid clay mineral formation in Amazon delta sediments: reverse weathering and oceanic elemental cycles. Science 270, 614–617 (1995). (PMID: 10.1126/science.270.5236.614)
Baldermann, A., Warr, L. N., Letofsky-Papst, I. & Mavromatis, V. Substantial iron sequestration during green-clay authigenesis in modern deep-sea sediments. Nat. Geosci. 8, 885–889 (2015). (PMID: 10.1038/ngeo2542)
Egli, M. & Mirabella, A. In Hydrogeology, Chemical Weathering, and Soil Formation (eds Hunt, A., Egli, M. & Faybishenko, B.) Ch. 6 (Wiley, 2021).
Ehlert, C. et al. Stable silicon isotope signatures of marine pore waters–Biogenic opal dissolution versus authigenic clay mineral formation. Geochim. Cosmochim. Acta 191, 102–117 (2016). (PMID: 10.1016/j.gca.2016.07.022)
Kalderon-Asael, B. et al. A lithium-isotope perspective on the evolution of carbon and silicon cycles. Nature 595, 394–398 (2021). (PMID: 3426221110.1038/s41586-021-03612-1)
Li, F. et al. Reverse weathering may amplify post-Snowball atmospheric carbon dioxide levels. Precambrian Res. 364, 106279 (2021). (PMID: 10.1016/j.precamres.2021.106279)
Odin, G. S. & Matter, A. De glauconiarum origine. Sedimentology 28, 611–641 (1981). (PMID: 10.1111/j.1365-3091.1981.tb01925.x)
Amorosi, A. The occurrence of glaucony in the stratigraphic record: distribution patterns and sequence-stratigraphic significance. Int. Assoc. Sedimentol. Spec. Publ. 45, 37–45 (2012).
Banerjee, S., Bansal, U. & Thorat, A. V. A review on palaeogeographic implications and temporal variation in glaucony composition. J. Palaeogeogr. 5, 43–71 (2016). (PMID: 10.1016/j.jop.2015.12.001)
López-Quirós et al. Glaucony authigenesis, maturity and alteration in the Weddell Sea: An indicator of paleoenvironmental conditions before the onset of Antarctic glaciation. Sci. Rep. 9, 13580 (2019). (PMID: 31537907675309910.1038/s41598-019-50107-1)
Wilmsen, M. Sequence stratigraphy and palaeoceanography of the Cenomanian Stage in northern Germany. Cret. Res. 24, 525–568 (2003). (PMID: 10.1016/S0195-6671(03)00069-7)
Wilmsen, M., Niebuhr, B. & Hiss, M. The Cenomanian of northern Germany: facies analysis of a transgressive biosedimentary system. Facies 51, 242–263 (2005). (PMID: 10.1007/s10347-005-0058-5)
Wilmsen, M. Accommodation- versus capacity-controlled deposition in the Cenomanian (Upper Cretaceous) of northern Germany. Beringeria 37, 239–251 (2007).
Baldermann, A. et al. The role of Fe on the formation and diagenesis of interstratified glauconite-smectite and illite-smectite: a case study of Upper Cretaceous shallow-water carbonates. Chem. Geol. 453, 21–34 (2017). (PMID: 10.1016/j.chemgeo.2017.02.008)
Baldermann, A., Warr, L. N., Grathoff, G. H. & Dietzel, M. The rate and mechanism of deep-sea glauconite formation at the Ivory Coast – Ghana Marginal Ridge. Clays Clay Miner. 61, 258–276 (2013). (PMID: 10.1346/CCMN.2013.0610307)
Banerjee, S., Choudhury, T. R., Saraswati, P. K. & Khanolkar, S. The formation of authigenic deposits during Palaeogene warm climatic intervals: a review. J. Palaeogeogr. 9, 27 (2020). (PMID: 10.1186/s42501-020-00076-8)
Bansal, U., Banerjee, S., Pande, K. & Ruidas, D. K. Unusual seawater composition of the Late Cretaceous Tethys imprinted in glauconite of Narmada basin, central India. Geol. Mag. 137, 233–247 (2020). (PMID: 10.1017/S0016756819000621)
Bansal, U., Banerjee, S. & Nagendra, R. Is the rarity of glauconite in Precambrian deposits related to its transformation to chlorite? Precambrian Res. https://doi.org/10.1016/j.precamres.2019.105509 (2020).
Choudhury, T. R., Banerjee, S., Khanolkar, S. & Saraswati, P. K. Glauconite authigenesis during the onset of the Paleocene-Eocene thermal maximum: a case study from the Khuiala formation in Jaisalmer Basin, India. Palaeogeogr. Palaeoclimatol. Palaeoecol. 571, 110388 (2021). (PMID: 10.1016/j.palaeo.2021.110388)
Amorosi, A., Sammartino, I. & Tateo, F. Evolution patterns of glaucony maturity: a mineralogical and geochemical approach. Deep Sea Res. Part II: Top. Stud. Oceanogr. 54, 1364–1374 (2007). (PMID: 10.1016/j.dsr2.2007.04.006)
Fernández-Landero, S. & Fernández-Caliani, J. C. Mineralogical and crystal-Chemical constraints on the glauconite-forming process in neogene sediments of the lower Guadalquivir Basin (SW Spain). Minerals 11, 578 (2021). (PMID: 10.3390/min11060578)
Gradstein, F. M., Ogg, J. G. & Smith, A. G. A Geologic Time Scale (Cambridge Univ. Press, 2004).
Chattoraj, S. L., Banerjee, S., Saraswati, P. K. & Bansal, U. Origin, depositional setting and stratigraphic implications of Palaeogene glauconite of Kutch. J. Geol. Soc. India 6, 75–88 (2016).
Gao, Y., Henkes, G. A., Cochran, J. K. & Landman, N. H. Temperatures of Late Cretaceous (Campanian) methane-derived authigenic carbonates from the Western Interior Seaway, South Dakota, USA, using clumped isotopes. Geol. Soc. Am. Bull. 133, 2524–2534 (2021). (PMID: 10.1130/B35846.1)
Tréguer, P. J. et al. Reviews and syntheses: the biogeochemical cycle of silicon in the modern ocean. Biogeosciences 18, 1269–1289 (2021). (PMID: 10.5194/bg-18-1269-2021)
Logvinenko, N. V. Origin of glauconite in the recent bottom sediments of the ocean. Sed. Geol. 31, 43–48 (1982). (PMID: 10.1016/0037-0738(82)90006-9)
Piñero, E., Marquardt, M., Hensen, C., Haeckel, M. & Wallmann, K. Estimation of the global inventory of methane hydrates in marine sediments using transfer functions. Biogeosciences 10, 959–975 (2013). (PMID: 10.5194/bg-10-959-2013)
Dutkiewicz, A. et al. Predicting sediment thickness on vanished ocean crust since 200 Ma. Geochem. Geophys. 18, 4586–4603 (2017). (PMID: 10.1002/2017GC007258)
Rauch, J. N. & Pacyna, J. M. Earth’s global Ag, Al, Cr, Cu, Fe, Ni, Pb, and Zn cycles. Glob. Biogeochem. Cy. 23, GB2001 (2009). (PMID: 10.1029/2008GB003376)
Sun, X., Higgins, J. & Turchyn, A. V. Diffusive cation fluxes in deep-sea sediments and insight into the global geochemical cycles of calcium, magnesium, sodium and potassium. Mar. Geol. 373, 64–77 (2016). (PMID: 10.1016/j.margeo.2015.12.011)
Restreppo, G. A., Wood, W. T. & Phrampus, B. J. Oceanic sediment accumulation rates predicted via machine learning algorithm: towards sediment characterization on a global scale. Geo-Mar. Lett. 40, 755–763 (2020). (PMID: 10.1007/s00367-020-00669-1)
Garrels, R. M. & Mackenzie, F. T. Evolution of Sedimentary Rocks (Norton, 1971).
Berner, E. K. & Berner, R. A. Global Environment: Water, Air, and Geochemical Cycles (Princeton Univ. Press, 2012).
Sayles, F. L. The composition and diagenesis of interstitial solutions – I. Fluxes across the seawater-sediment interface in the Atlantic Ocean. Geochim. Cosmochim. Acta 43, 527–545 (1979). (PMID: 10.1016/0016-7037(79)90163-7)
Higgins, J. A. & Schrag, D. P. Records of Neogene seawater chemistry and diagenesis in deep-sea carbonate sediments and pore fluids. Earth Planet. Sci. Lett. 357-358, 386–396 (2012). (PMID: 10.1016/j.epsl.2012.08.030)
Maring, H. B. & Duce, R. A. The impact of atmospheric aerosols on trace metal chemistry in open ocean surface seawater, 1. Aluminum. Earth Planet. Sci. Lett. 84, 381–392 (1987). (PMID: 10.1016/0012-821X(87)90003-3)
Xu, H. & Weber, T. Ocean dust deposition rates constrained in a data-assimilation model of the marine aluminum cycle. Glob. Biogeochem. Cy. 35, e2021GB007049 (2021). (PMID: 10.1029/2021GB007049)
DeMaster, D. J. The supply and accumulation of silica in the marine environment. Geochim. Cosmochim. Acta 45, 1715–−1732 (1981). (PMID: 10.1016/0016-7037(81)90006-5)
Henderson, G. M. et al. GEOTRACES – An international study of the global marine biogeochemical cycles of trace elements and their isotopes. Chem. Erde 67, 85–−131 (2007). (PMID: 10.1016/j.chemer.2007.02.001)
Somes, C. J. et al. Constraining global marine iron sources and ligand-mediated scavenging fluxes with GEOTRACES dissolved iron measurements in an ocean biogeochemical model. Glob. Biogeochem. Cy. 35, e2021GB006948 (2021). (PMID: 10.1029/2021GB006948)
Conley, D. J. et al. Biosilicification drives a decline of dissolved Si in the oceans through geologic time. Front. Mar. Sci. 4, 397 (2017). (PMID: 10.3389/fmars.2017.00397)
Westacott, S., Planavsky, N. J., Zhao, M.-Y. & Hull, P. M. Revisiting the sedimentary record of the rise of diatoms. Proc. Natl Acad. Sci. USA 118, e2103517118 (2021). (PMID: 34183398827162710.1073/pnas.2103517118)
Cao, W. et al. Improving global paleogeography since the late Paleozoic using paleobiology. Biogeosciences 14, 5425–5439 (2017). (PMID: 10.5194/bg-14-5425-2017)
Scotese, C. R. & Wright, N. PALEOMAP Paleodigital Elevation Models (PaleoDEMS) for the Phanerozoic. https://www.earthbyte.org/paleodem‐resource‐scotese‐and‐wright‐2018/ https://doi.org/10.5281/zenodo.5348492 (2018).
Baldermann, A. et al. A novel nZVI–bentonite nanocomposite to remove trichloroethene (TCE) from solution. Chemosphere 282, 131018 (2021). (PMID: 3411972510.1016/j.chemosphere.2021.131018)
Demény, A. et al. Middle Bronze Age humidity and temperature variations, and societal changes in East-Central Europe. Quat. Int. 504, 80–95 (2019). (PMID: 10.1016/j.quaint.2017.11.023)
Friedman, I. & O’Neil, J. R. In Data of Geochemistry (ed. Fleischer, M.) Chapter KK (US Government Printing Office, 1977).
Wessel, P. et al. The generic mapping tools version 6. Geochem Geophys. 20, 5556–5564 (2019). (PMID: 10.1029/2019GC008515)
Golonka, J., Krobicki, M., Pajak, J., Giang, N. V. & Zuchiewicz, W. Global Plate Tectonics and Paleogeography of Southeast Asia (Fac. of Geology, Geophysics and Environmental Protection, AGH University of Science and Technology, 2006).
Matthews, K. J. et al. Global plate boundary evolution and kinematics since the late Paleozoic. Glob. Planet. Change 146, 226–250 (2016). (PMID: 10.1016/j.gloplacha.2016.10.002)
Substance Nomenclature:
0 (Minerals)
T1FAD4SS2M (Clay)
Entry Date(s):
Date Created: 20220323 Date Completed: 20220412 Latest Revision: 20221024
Update Code:
20240104
PubMed Central ID:
PMC8940969
DOI:
10.1038/s41467-022-29223-6
PMID:
35318333
Czasopismo naukowe
Retrograde clay mineral reactions (reverse weathering), including glauconite formation, are first-order controls on element sequestration in marine sediments. Here, we report substantial element sequestration by glauconite formation in shallow marine settings from the Triassic to the Holocene, averaging 3 ± 2 mmol·cm - ²·kyr -1 for K, Mg and Al, 16 ± 9 mmol·cm - ²·kyr -1 for Si and 6 ± 3 mmol·cm - ²·kyr -1 for Fe, which is ~2 orders of magnitude higher than estimates for deep-sea settings. Upscaling of glauconite abundances in shallow-water (0-200 m) environments predicts a present-day global uptake of ~≤ 0.1 Tmol·yr -1 of K, Mg and Al, and ~0.1-0.4 Tmol·yr -1 of Fe and Si, which is ~half of the estimated Mesozoic elemental flux. Clay mineral authigenesis had a large impact on the global marine element cycles throughout Earth's history, in particular during 'greenhouse' periods with sea level highstand, and is key for better understanding past and present geochemical cycling in marine sediments.
(© 2022. The Author(s).)

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies