Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Development of a Fully Continuous-Flow Approach Towards Asymmetric Total Synthesis of Tetrahydroprotoberberine Natural Alkaloids.

Tytuł:
Development of a Fully Continuous-Flow Approach Towards Asymmetric Total Synthesis of Tetrahydroprotoberberine Natural Alkaloids.
Autorzy:
Li W; Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China.
Jiang M; Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University, Shanghai, 200433, China.; Shanghai Engineering Center of Industrial Asymmetric Catalysis for Chiral Drugs, Shanghai, 200433, China.
Liu M; Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University, Shanghai, 200433, China.; Shanghai Engineering Center of Industrial Asymmetric Catalysis for Chiral Drugs, Shanghai, 200433, China.
Ling X; Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China.
Xia Y; Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China.
Wan L; Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University, Shanghai, 200433, China.; Shanghai Engineering Center of Industrial Asymmetric Catalysis for Chiral Drugs, Shanghai, 200433, China.
Chen F; Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China.; Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University, Shanghai, 200433, China.; Shanghai Engineering Center of Industrial Asymmetric Catalysis for Chiral Drugs, Shanghai, 200433, China.
Źródło:
Chemistry (Weinheim an der Bergstrasse, Germany) [Chemistry] 2022 Jun 10; Vol. 28 (33), pp. e202200700. Date of Electronic Publication: 2022 May 04.
Typ publikacji:
Journal Article
Język:
English
Imprint Name(s):
Original Publication: Weinheim, Germany : Wiley-VCH
MeSH Terms:
Alkaloids*/chemistry
Biological Products*/chemistry
Berberine Alkaloids ; Cyclization ; Stereoisomerism
References:
B. M. Trost, Angew. Chem. Int. Ed. 1995, 34, 259-281;.
Angew. Chem. 1995, 107, 285-307.
 .
Y. Hayashi, J. Org. Chem. 2021, 86, 1-23;.
Y. Hayashi, Acc. Chem. Res. 2021, 54, 1385-1398.
 .
C. J. Li, B. M. Trost, Proc. Natl. Acad. Sci. USA 2008, 105, 13197-13202;.
R. A. Sheldon, Chem. Soc. Rev. 2012, 41, 1437-1451;.
P. A. Wender, Tetrahedron 2013, 69, 7529-7550.
 .
R. L. Hartman, J. P. McMullen, K. F. Jensen, Angew. Chem. Int. Ed. 2011, 50, 7502-7519;.
Angew. Chem. 2011,123, 7642-7661;.
G. Jurjens, A. Kirschning, D. A. Candito, Nat. Prod. Rep. 2015, 32, 723-737;.
A. Adamo, R. L. Beingessner, M. Behnam, J. Chen, T. F. Jamison, K. F. Jensen, J. C. M. Monbaliu, A. S. Myerson, E. M. Revalor, D. R. Snead, T. Stelzer, N. Weeranoppanant, S. Y. Wong, P. Zhang, Science 2016, 352, 61-67;.
C. W. Coley, D. A. Thomas, J. A. M. Lummiss, J. N. Jaworski, C. P. Breen, V. Schultz, T. Hart, J. S. Fishman, L. Rogers, H. Gao, R. W. Hicklin, P. P. Plehiers, J. Byington, J. S. Piotti, W. H. Green, A. J. Hart, T. F. Jamison, K. F. Jensen, Science 2019, 365, eaax1566;.
M. Baumann, T. S. Moody, M. Smyth, S. Wharry, Org. Process Res. Dev. 2020, 24, 1802-1813;.
M. Trojanowicz, Molecules 2020, 25, 1434-1486;.
J. Liao, S. Zhang, Z. Wang, X. Song, D. Zhang, R. Kumar, J. Jin, P. Ren, H. You, F.-E. Chen, Green Synth. Catal. 2020, 1, 121-133;.
C. P. Breen, A. M. K. Nambiar, T. F. Jamison, K. F. Jensen, Trends Chem. 2021, 3, 373-386.
 .
J. C. Pastre, D. L. Browne, S. V. Ley, Chem. Soc. Rev. 2013, 42, 8849-8869;.
J. Britton, C. L. Raston, Chem. Soc. Rev. 2017, 46, 1250-1271.
 .
I. R. Baxendale, J. Deeley, C. M. Griffiths-Jones, S. V. Ley, S. Saaby, G. K. Tranmer, Chem. Commun. 2006, 24, 2566-2568;.
S. V. Ley, A. Fernández, Z. Levine, M. Baumann, S. Sulzer-Mossé, C. Sparr, S. Schläger, A. Metzger, I. Baxendale, Synlett 2013, 24, 514-518;.
S. Newton, C. F. Carterine, C. M. Pearson, C. A. L. de, H. Lange, P. Thansandote, S. V. Ley, Angew. Chem. Int. Ed. 2014, 53, 4915-4920;.
Angew. Chem. 2014,126, 5015-5020;.
D. Lucke, T. Dalton, S. V. Ley, Z. E. Wilson, Chem. Eur. J. 2016, 22, 4206-4217;.
J. C. Pastre, P. R. D. Murray, D. L. Browne, G. A. Brancaglion, R. S. Galaverna, R. A. Pilli, S. V. Ley, ACS Omega 2020, 5, 18472-18483.
 .
M. Brasholz, J. M. Macdonald, S. Saubern, J. H. Ryan, A. B. Holmes, Chem. Eur. J. 2010, 16, 11471-11480;.
M. Brasholz, B. A. Johnson, J. M. Macdonald, A. Polyzos, J. Tsanaktsidis, S. Saubern, A. B. Holmes, J. H. Ryan, Tetrahedron 2010, 66, 6445-6449;.
S. Achanta, V. Liautard, R. Paugh, M. G. Organ, Chem. Eur. J. 2010, 16, 12797-12800;.
S. Fuse, N. Tanabe, M. Yoshida, H. Yoshida, T. Doi, T. Takahashi, Chem. Commun. 2010, 46, 8722-8724.
 .
E. Riva, A. Rencurosi, S. Gagliardi, D. Passarella, M. Martinelli, Chem. Eur. J. 2011, 17, 6221-6226;.
H. Kim, A. Nagaki, J. Yoshida, Nat. Commun. 2011, 2, 1-6;.
F. Levesque, P. H. Seeberger, Angew. Chem. Int. Ed. 2012, 51, 1706-1709;.
Angew. Chem. 2012,124, 1738-1741;.
T. Oishi, J. Synth. Org. Chem. Jpn. 2012, 70, 1170-1177.
 .
H. Yueh, Q. Gao, J. Porco, Jr., A. B. Beeler, Bioorg. Med. Chem. 2017, 25, 6197-6202;.
E. Morin, M. Raymond, A. Dubart, S. K. Collins, Org. Lett. 2017, 19, 2889-2892;.
C. C. Carmona-Vargas, L. de C Alves, T. J. Brocksom, K. T. de Oliveira, React. Chem. Eng. 2017, 2, 366-374.
 .
D. Cortes-Borda, E. Wimmer, B. Gouilleux, E. Barre, N. Oger, L. Goulamaly, L. Peault, B. Charrier, C. Truchet, P. Giraudeau, M. Rodriguez-Zubiri, E. Le Grognec, F. X. Felpin, J. Org. Chem. 2018, 83, 14286-14299;.
S. Parisien-Collette, S. K. Collins, ChemPhotoChem 2018, 2, 855-859;.
K. P. Cole, M. D. Argentine, E. W. Conder, R. K. Vaid, P. Feng, M. Jia, P. Huang, P. Liu, B. Sun, S. Tadayon, C. Zhu, R. Zhu, Org. Process Res. Dev. 2020, 24, 2043-2054;.
N. P. Rossouw, M. A. Rizzacasa, A. Polyzos, J. Org. Chem. 2021, 86, 14223-14231.
 .
W. Zhang, X. Chen, Y. An, J. Wang, C. Zhuang, P. Tang, F.-E. Chen, Chem. Eur. J. 2020, 26, 10439-10443;.
K. Zhu, M. Jiang, B. Ye, G. T. Zhang, W. Li, P. Tang, Z. Huang, F.-E. Chen, Chem. Sci. 2021, 12, 10362-10370;.
W. Li, M. Jiang, W. Chen, Y. Chen, Z. Yang, P. Tang, F.-E. Chen, J. Org. Chem. 2021, 86, 8143-8153;.
Y. Xia, M. Jiang, M. Liu, Y. Zhang, H. Qu, T. Xiong, H. Huang, D. Cheng, F.-E. Chen, J. Org. Chem. 2021, 86, 11557-11570;.
M. Jiang, M. Liu, H. Huang, F.-E. Chen, Org. Process Res. Dev. 2021, 25, 2331-2337.
 .
Y. Saito, K. Nishizawa, B. Laroche, H. Ishitani, S. Kobayashi, Angew. Chem. Int. Ed. 2022, 61, e2021156;.
Angew. Chem. 2022, 134, e202115;.
S. B. Ötvös, C. O. Kappe, Green Chem. 2021, 23, 6117-6138;.
C. R. Sagandira, F. M. Akwi, M. B. Sagandira, P. Watts, J. Org. Chem. 2021, 86, 13934-13942;.
M. G. Russell, T. F. Jamison, Angew. Chem. Int. Ed. 2019, 58, 7678-7681;.
Angew. Chem. 2019, 131, 7760-7763;.
H. Lin, C. Dai, T. F. Jamison, K. F. Jensen, Angew. Chem. Int. Ed. 2017, 56, 8870-8873;.
Angew. Chem. 2017, 129, 8996-8999;.
D. R. Snead, T. F. Jamison, Angew. Chem. Int. Ed. 2015, 54, 983-987;.
Angew. Chem. 2015, 127, 997-1001;.
C. A. Correia, K. Gilmore, D. T. McQuade, P. H. Seeberger, Angew. Chem. Int. Ed. 2015, 54, 4945-4948;.
Angew. Chem. 2015, 127, 5028-5032;.
T. Tsubogo, H. Oyamada, S. Kobayashi, Nature 2015, 520, 329-332.
 .
L. Kupracza, A. Kirschning, Adv. Synth. Catal. 2013, 355, 3375-3380;.
C. Battilocchio, B. J. Deadman, N. Nikbin, M. O. Kitching, I. R. Baxendale, S. V. Ley, Chem. Eur. J. 2013, 19, 7917-7930;.
L. Guetzoyan, N. Nikbin, I. R. Baxendaleb, S. V. Ley, Chem. Sci. 2013, 4, 764-769;.
A. R. Bogdan, S. L. Poe, D. C. Kubis, S. J. Broadwater, D. T. McQuade, Angew. Chem. Int. Ed. 2009, 48, 8547-8550;.
Angew. Chem. 2009, 121, 8699-8702.
For selected reviews, see:.
R. H. F. Manske, W. R. Ashford, The Alkaloids: Chemical and Biological Perspectives 1954, 4, 77-118;.
P. W. Jeffs, The Alkaloids: Chemistry and Physiology 1967 9, 41-115;.
F. Šantavý, The Alkaloids: Chemistry and Physiology 1979, 17, 385-544;.
D. S. Bhakuni, S. Jain, The Alkaloids: Chemistry and Pharmacology 1986, 28, 95-181;.
M. Hanaoka, The Alkaloids: Chemistry and Pharmacology 1988, 33, 141-230;.
E. V. L. Da-Cunha, I. M. Fechine, D. N. Guedes, J. M. Barbosa-Filho, M. S. Silva, The Alkaloids: Chemistry and Biology 2005, 62, 1-75.
 .
H. Liu, X. C. Zhen, H. F. Su, L. Y. Zhu, W. K. Qian, L. Yu, Z. Li, W. X. Cai, H. L. Jiang, K. X. Chen, CN 102796096A; Chem. Abstr. 2013, 158, 56369;.
Z. H. Zhang, H. J. Zhang, A. J. Deng, B. Wang, Z. H. Li, Y. Liu, L. Q. Wu, W. J. Wang, H. L. Qin, J. Med. Chem. 2015, 58, 7557-7571;.
Y. H. Li, P. Yang, W. J. Kong, Y. X. Wang, C. Q. Hu, Z. Y. Zuo, Y. M. Wang, H. Gao, L. M. Gao, Y. C. Feng, N. N. Du, Y. Liu, D. Q. Song, J. D. Jiang, J. Med. Chem. 2009, 52, 492-501;.
S. Wu, D. M. Wang, J. Z. Wei, CN 103421003A; Chem. Abstr. 2013, 160, 3419.
 .
J. Yu, Z. Zhang, S. Zhou, W. Zhang, R. Tong, Org. Chem. Front. 2018, 5, 242-246;.
H. Sun, L. Zhu, H. Yang, W. Qian, L. Guo, S. Zhou, B. Gao, Z. Li, Y. Zhou, H. Jiang, K. Chen, X. Zhen, H. Liu, Bioorg. Med. Chem. 2013, 21, 856-868.
 .
D. L. Browne, B. J. Deadman, R. Ashe, I. R. Baxendale, S. V. Ley, Org. Process Res. Dev. 2011, 15, 693-697;.
M. R. Chapman, M. H. T. Kwan, G. King, K. E. Jolley, M. Hussain, S. Hussain, I. E. Salama, C. González Niño, L. A. Thompson, M. E. Bayana, A. D. Clayton, B. N. Nguyen, N. J. Turner, N. Kapur, A. J. Blacker, Org. Process Res. Dev. 2017, 21, 1294-1301.
S. Zhou, R. Tong, Chem. Eur. J. 2016, 22, 7084-7089.
S. Saaby, K. R. Knudsen, M. Ladlowb, S. V. Ley, Chem. Commun. 2005, 23, 2909-2911.
The batch conditions were shown in Supporting Information in details.
Grant Information:
YJ201805 Fundamental Research Funds for the Central Universities; YJ201864 Fundamental Research Funds for the Central Universities; JIH1615026Y the startup fund from Fudan University; JIH1615026Y startup fund from Fudan University
Contributed Indexing:
Keywords: Pictet-Spengler reaction/Pomeranz-Fritsch cascade cyclization; enantioselective hydrogenation; fully continuous flow; tetrahydroprotoberberine alkaloids; total synthesis
Substance Nomenclature:
0 (Alkaloids)
0 (Berberine Alkaloids)
0 (Biological Products)
728C74FB5Z (berbine)
Entry Date(s):
Date Created: 20220331 Date Completed: 20220614 Latest Revision: 20220614
Update Code:
20240104
DOI:
10.1002/chem.202200700
PMID:
35357730
Czasopismo naukowe
Continuous flow synthetic technologies had been widely applied in the total synthesis in the past few decades. Fully continuous flow synthesis is still extremely focused on multi-step synthesis of complex natural pharmaceutical molecules. Thus, the development of fully continuous flow total synthesis of natural products is in demand but challenging. Herein, we demonstrated the first fully continuous flow approach towards asymmetric total synthesis of natural tetrahydroprotoberberine alkaloids, (-)-isocanadine, (-)-tetrahydropseudocoptisine, (-)-stylopine and (-)-nandinine. This method features a concise linear sequence involving four chemical transformations and three on-line work-up processing in an integrated flow platform, without any intermediate purification. The overall yield and enantioselectivity of this four-step continuous flow chemistry were up to 50 % and 92 %ee, respectively, in a total residence time of 32.5 min, corresponding to a throughput of 145 mg/h.
(© 2022 Wiley-VCH GmbH.)
Zaloguj się, aby uzyskać dostęp do pełnego tekstu.

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies