Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Evaluating sources of bias in pedigree-based estimates of breeding population size.

Tytuł:
Evaluating sources of bias in pedigree-based estimates of breeding population size.
Autorzy:
White SL; Akima Systems Engineers, Under Contract to the US Geological Survey, Kearneysville, West Virginia, USA.
Sard NM; Department of Biological Sciences, State University of New York-Oswego, Oswego, New York, USA.
Brundage HM 3rd; Environmental Research and Consulting, Inc, Lewes, Delaware, USA.
Johnson RL; US Geological Survey Eastern Ecological Science Center, Kearneysville, West Virginia, USA.
Lubinski BA; US Geological Survey Eastern Ecological Science Center, Kearneysville, West Virginia, USA.
Eackles MS; US Geological Survey Eastern Ecological Science Center, Kearneysville, West Virginia, USA.
Park IA; Delaware Division of Fish and Wildlife, Dover, Delaware, USA.
Fox DA; Department of Agriculture and Natural Resources, Delaware State University, Dover, Delaware, USA.
Kazyak DC; US Geological Survey Eastern Ecological Science Center, Kearneysville, West Virginia, USA.
Źródło:
Ecological applications : a publication of the Ecological Society of America [Ecol Appl] 2022 Jul; Vol. 32 (5), pp. e2602. Date of Electronic Publication: 2022 May 17.
Typ publikacji:
Journal Article; Research Support, U.S. Gov't, Non-P.H.S.; Research Support, Non-U.S. Gov't
Język:
English
Imprint Name(s):
Publication: Washington, D.C. : Ecological Society of America
Original Publication: Tempe, AZ : The Society, 1991-
MeSH Terms:
Breeding*
Genetics, Population*
Animals ; Bias ; Fishes/genetics ; Humans ; Pedigree ; Population Density
References:
Ackerman, M. W., B. K. Hand, R. K. Waples, G. Luikart, R. S. Waples, C. A. Steele, B. A. Garner, J. McCane, and M. R. Campbell. 2017. “Effective Number of Breeders from Sibship Reconstruction: Empirical Evaluations Using Hatchery Steelhead.” Evolutionary Applications 10: 146-60.
Allendorf, F. W. 2017. “Genetics and the Conservation of Natural Populations: Allozymes to Genomes.” Molecular Ecology 26: 420-30.
Amburgey, S. M., A. A. Yackel, B. Gardner, N. J. Hostetter, S. R. Siers, B. T. McClintock, and S. J. Converse. 2021. “Evaluation of Camera Trap-Based Abundance Estimators for Unmarked Populations.” Ecological Applications 31: e02410.
Atlantic States Marine Fisheries Commission. 2017. “Atlantic Sturgeon Benchmark Stock Assessment and Peer Review Report.” Special Report to the ASMFC Atlantic Sturgeon Management Board.
Bain, M. B. 1997. “Atlantic and Shortnose Sturgeons of the Hudson River: Common and Divergent Life History Attributes.” Environmental Biology of Fishes 48: 347-58.
Blouin, M. S. 2003. “DNA-Based Methods for Pedigree Reconstruction and Kinship Analysis in Natural Populations.” Trends in Ecology and Evolution 18: 503-11.
Bravington, M. V., P. M. Grewe, and C. R. Davies. 2014. Fishery-Independent Estimate of Spawning Biomass of Southern Bluefin Tuna through Identification of Close-Kin Using Genetic Markers. FRDC Report 2007/034. Canberra: CSIRO.
Bravington, M. V., H. J. Skaug, and E. C. Anderson. 2016. “Close-Kin Mark-Recapture.” Statistical Science 31: 259-74.
Breece, M. W., A. L. Higgs, and D. A. Fox. 2021. “Spawning Intervals, Timing, and Riverine Habitat Use of Adult Atlantic Sturgeon in the Hudson River.” Transactions of the American Fisheries Society 150: 528-37.
Breece, M. W., M. J. Oliver, M. A. Cimino, and D. A. Fox. 2013. “Shifting Distributions of Adult Atlantic Sturgeon Amidst Post-Industrialization and Future Impacts in the Delaware River: A Maximum Entropy Approach.” PLoS One 8: e81321.
Brundage, H. M., J. Morson, and J. C. O'Herron. 2014. Juvenile Atlantic Sturgeon Movement and Habitat Use in the Delaware Estuary During 2009-2011. Chapter 2 in: E. Bochenek, et al. Effects of Flow Dynamics, Salinity, and Water Quality on the Eastern Oyster, the Atlantic Sturgeon, and the Shortnose Sturgeon in the Oligohaline Zone of the Delaware Estuary. Report Submitted to the U. S. Army Corps of Engineers, Philadelphia District. Bridgeton, NJ: Seaboard Fisheries Institute.
Chao, A. 1984. “Nonparametric Estimation of the Number of Classes in a Population.” Scandinavian Journal of Statistics 11: 265-70.
Couturier, T., M. Cheylan, A. Bertolero, G. Astruc, and A. Besnard. 2013. “Estimating Abundance and Population Trends when Detection Is Low and Highly Variable: A Comparison of Three Methods for the Hermann's Tortoise.” The Journal of Wildlife Management 77: 454-62.
Crawford, B. A., and S. M. Rumsey. 2011. Guidance for Monitoring Recovery of Pacific Northwest Salmon and Steelhead Listed Under the Federal Endangered Species Act. Portland, OR: National Oceanic and Atmospheric Administration, National Marine Fisheries Service, Northwest Region.
Dénes, F. V., L. F. Silveira, and S. R. Beissinger. 2015. “Estimating Abundance of Unmarked Animal Populations: Accounting for Imperfect Detection and Other Sources of Zero Inflation.” Methods in Ecology and Evolution 6: 543-56.
Dirzo, R., H. S. Young, M. Galetti, G. Ceballos, N. J. Isaac, and B. Collen. 2014. “Defaunation in the Anthropocene.” Science 345: 401-6.
Gerber, B. D., J. S. Ivan, and K. P. Burnham. 2014. “Estimating the Abundance of Rare and Elusive Carnivores from Photographic-Sampling Data when the Population Size Is Very Small.” Population Ecology 56: 463-70.
Hale, E. A., I. A. Park, M. T. Fisher, R. A. Wong, M. J. Stangl, and J. H. Clark. 2016. “Abundance Estimate for and Habitat Use by Early Juvenile Atlantic Sturgeon within the Delaware River Estuary.” Transactions of the American Fisheries Society 145: 1193-201.
Harmsen, B. J., R. J. Foster, and C. P. Doncaster. 2011. “Heterogeneous Capture Rates in Low Density Populations and Consequences for Capture-Recapture Analysis of Camera-Trap Data.” Population Ecology 53: 253-9.
Harrison, H. B., P. Saenz-Agudelo, S. Planes, G. P. Jones, and M. L. Berumen. 2013. “Relative Accuracy of Three Common Methods of Parentage Analysis in Natural Populations.” Molecular Ecology 22: 1158-70.
Hendricks, S., E. C. Anderson, T. Antao, L. Bernatchez, B. R. Forester, B. Garner, B. K. Hand, et al. 2018. “Recent Advances in Conservation and Population Genomics Data Analysis.” Evolutionary Applications 11: 1197-211.
Herbst, S. J., L. R. Nathan, T. J. Newcomb, M. R. DuFour, J. Tyson, E. Weimer, J. Buszkiewicz, and J. M. Dettmers. 2021. “An Adaptive Management Approach for Implementing Multi-Jurisdictional Response to Grass Carp in Lake Erie.” Journal of Great Lakes Research 47: 96-107.
Hunter, R. D., E. F. Roseman, N. M. Sard, R. L. DeBruyne, J. Wang, and K. T. Scribner. 2020. “Genetic Family Reconstruction Characterizes Lake Sturgeon Use of Newly Constructed Spawning Habitat and Larval Dispersal.” Transactions of the American Fisheries Society 149: 266-83.
Israel, J. A., and B. May. 2010. “Indirect Genetic Estimates of Breeding Population Size in the Polyploid Green Sturgeon (Acipenser medirostris).” Molecular Ecology 19: 1058-70.
Jay, K., J. A. Crossman, and K. T. Scribner. 2014. “Estimates of Effective Number of Breeding Adults and Reproductive Success for White Sturgeon.” Transactions of the American Fisheries Society 143: 1204-16.
Jones, A. G., C. M. Small, K. A. Paczolt, and N. L. Ratterman. 2010. “A Practical Guide to Methods of Parentage Analysis.” Molecular Ecology Resources 10: 6-30.
Jones, O. R., and J. Wang. 2010. “COLONY: A Program for Parentage and Sibship Inference from Multilocus Genotype Data.” Molecular Ecology Resources 10: 551-5.
Kazyak, D. C., S. L. White, B. A. Lubinski, R. Johnson, and M. Eackles. 2021. “Stock Composition of Atlantic Sturgeon (Acipenser oxyrinchus oxyrinchus) Encountered in Marine and Estuarine Environments on the U.S. Atlantic Coast.” Conservation Genetics 22: 767-81.
Kohn, M. H., E. C. York, D. A. Kamradt, G. Haught, R. M. Sauvajot, and R. K. Wayne. 1999. “Estimating Population Size by Genotyping Faeces.” Proceedings of the Royal Society of London. Series B: Biological Sciences 266: 657-63.
Lindenmayer, D. B., G. E. Likens, A. Andersen, D. Bowman, C. M. Bull, E. Burns, C. R. Dickman, et al. 2012. “Value of Long-Term Ecological Studies.” Austral Ecology 37: 745-57.
Link, W. A. 2003. “Nonidentifiability of Population Size from Capture-Recapture Data with Heterogeneous Detection Probabilities.” Biometrics 59: 1123-30.
Luikart, G., N. Ryman, D. A. Tallmon, M. K. Schwartz, and F. W. Allendorf. 2010. “Estimation of Census and Effective Population Sizes: The Increasing Usefulness of DNA-Based Approaches.” Conservation Genetics 11: 355-73.
Lukacs, P. M., and K. P. Burnham. 2005. “Review of Capture-Recapture Methods Applicable to Noninvasive Genetic Sampling.” Molecular Ecology 14: 3909-19.
Meek, M. H., and W. A. Larson. 2019. “The Future Is Now: Amplicon Sequencing and Sequence Capture Usher in the Conservation Genomics Era.” Molecular Ecology Resources 19: 795-803.
Moyer, G. R., J. A. Sweka, and D. L. Peterson. 2012. “Past and Present Processes Influencing Genetic Diversity and Effective Population Size in a Natural Population of Atlantic Sturgeon.” Transactions of the American Fisheries Society 141: 56-67.
National Oceanic and Atmospheric Administration. 2012. “Endangered and Threatened Wildlife and Plants; Threatened and Endangered Status for Distinct Population Segments of Atlantic Sturgeon in the Northeast Region, Final Rule.” Federal Register, 77(6 February 2012), 5880-5912.
Pollock, K. H., J. D. Nichols, C. Brownie, and J. E. Hines. 1990. “Statistical inference for capture-recapture experiments.” Wildlife Monographs 107: 3-97.
Quenouille, M. H. 1949. “Approximate Tests of Correlation in Time-Series.” Journal of the Royal Statistical Society: Series B (Methodological) 11: 68-84.
Rawding, D. J., C. S. Sharpe, and S. M. Blankenship. 2014. “Genetic-Based Estimates of Adult Chinook Salmon Spawner Abundance from Carcass Surveys and Juvenile out-Migrant Traps.” Transactions of the American Fisheries Society 143: 55-67.
Robinson, N. M., B. C. Scheele, S. Legge, D. M. Southwell, O. Carter, M. Lintermans, J. Q. Radford, et al. 2018. “How to Ensure Threatened Species Monitoring Leads to Threatened Species Conservation.” Ecological Management and Restoration 19: 222-9.
Sard, N. M., R. D. Hunter, E. F. Roseman, D. B. Hayes, R. L. DeBruyne, and K. T. Scribner. 2021. “Pedigree Accumulation Analysis: Combining Methods from Community Ecology and Population Genetics for Breeding Adult Estimation.” Methods in Ecology and Evolution 12: 2388-96.
Schueller, P., and D. L. Peterson. 2010. “Abundance and Recruitment of Juvenile Atlantic Sturgeon in the Altamaha River, Georgia.” Transactions of the American Fisheries Society 139: 1526-35.
Secor, D. H., and J. R. Waldman. 1999. “Historical Abundance of Delaware Bay Atlantic Sturgeon and Potential Rate of Recovery.” In Life in the Slow Lane: Ecology and Conservation of Long-Lived Marine Animals, edited by J. A. Musick, 203-16. Bethesda, MD: American Fisheries Society Symposium 23.
Spitzer, R., A. J. Norman, M. Schneider, and G. Spong. 2016. “Estimating Population Size Using Single-Nucleotide Polymorphism-Based Pedigree Data.” Ecology and Evolution 6: 3174-84.
Sweka, J. A., J. Mohler, M. J. Millard, T. Kehler, A. Kahnle, K. Hattala, G. Kenney, and A. Higgs. 2007. “Juvenile Atlantic Sturgeon Habitat Use in Newburgh and Haverstraw Bays of the Hudson River: Implications for Population Monitoring.” North American Journal of Fisheries Management 27: 1058-67.
Tukey, J. 1958. “Bias and Confidence in Not Quite Large Samples.” Annals of Mathematical Statistics 29: 614-23.
van Eenennaam, J. P., S. I. Doroshov, G. P. Moberg, J. G. Watson, D. S. Moore, and J. Linares. 1996. “Reproductive Conditions of the Atlantic Sturgeon (Acipenser oxyrinchus) in the Hudson River.” Estuaries 19: 769-77.
Waldman, J., S. E. Alter, D. Peterson, L. Maceda, N. Roy, and I. Wirgin. 2019. “Contemporary and Historical Effective Population Sizes of Atlantic Sturgeon Acipenser oxyrinchus oxyrinchus.” Conservation Genetics 20: 167-84.
Wang, J. 2018. “Estimating Genotyping Errors from Genotype and Reconstructed Pedigree Data.” Methods in Ecology and Evolution 9: 109-20.
Waples, R. 1989. “A Generalized Approach for Estimating Effective Population Size from Temporal Changes in Allele Frequency.” Genetics 121: 379-91.
Waples, R. S., and T. Antao. 2014. “Intermittent Breeding and Constraints on Litter Size: Consequences for Effective Population Size per Generation (Ne) and per Reproductive Cycle (Nb).” Evolution 68: 1722-34.
Warnes, M. G. R. 2009. Package ‘gmodels’. Vienna: R Foundation for Statistical Computing.
White, S. L., D. C. Kazyak, T. L. Darden, D. J. Farrae, B. A. Lubinski, R. L. Johnson, M. S. Eackles, et al. 2021. Genotypes of Atlantic Sturgeon Collected from Canada to Georgia Used in the Development of a Genetic Baseline. U.S. Geological Survey Data Release. https://doi.org/10.5066/P9W46E5Q.
Whitlock, S. L., L. D. Schultz, C. B. Schreck, and J. E. Hess. 2017. “Using Genetic Pedigree Reconstruction to Estimate Effective Spawner Abundance from Redd Surveys: An Example Involving Pacific Lamprey (Entosphenus tridentatus).” Canadian Journal of Fisheries and Aquatic Sciences 74: 1646-53.
Contributed Indexing:
Keywords: Atlantic sturgeon; bias; breeding population size; pedigree rarefaction; pedigree reconstruction
Entry Date(s):
Date Created: 20220406 Date Completed: 20220704 Latest Revision: 20221018
Update Code:
20240105
DOI:
10.1002/eap.2602
PMID:
35384108
Czasopismo naukowe
Applications of genetic-based estimates of population size are expanding, especially for species for which traditional demographic estimation methods are intractable due to the rarity of adult encounters. Estimates of breeding population size (N S ) are particularly amenable to genetic-based approaches as the parameter can be estimated using pedigrees reconstructed from genetic data gathered from discrete juvenile cohorts, therefore eliminating the need to sample adults in the population. However, a critical evaluation of how genotyping and sampling effort influence bias in pedigree reconstruction, and how these biases subsequently influence estimates of N S , is needed to evaluate the efficacy of the approach under a range of scenarios. We simulated a model system to understand the interactive effects of genotyping and sampling effort on error in genetic pedigrees reconstructed from the program COLONY. We then evaluated how errors in pedigree reconstruction influenced bias and precision in estimates of N S using three different rarefaction estimators. Results indicated that pedigree error can be minimal when adequate genetic data are available, such as when juvenile sample sizes are large and/or individuals are genotyped at many informative loci. However, even in cases for which data are limited, using results of the simulation analysis to understand the magnitude and sources of bias in reconstructed pedigrees can still be informative when estimating N S . We applied results of the simulation analysis to evaluate N ̂ $$ \hat{N} $$ S for a population of federally endangered Atlantic sturgeon (Acipenser oxyrinchus oxyrinchus) in the Delaware River, USA. Our results indicated that N S is likely to be three orders of magnitude lower compared with historic breeding population sizes, which is a considerable advancement in our understanding of the population status of Atlantic sturgeon in the Delaware River. Our analyses are broadly applicable in the design and interpretation of studies seeking to estimate N S and can help to guide conservation decisions when ecological uncertainty is high. The utility of these results is expected to grow as rapid advances in genetic technologies increase the popularity of genetic population monitoring and estimation.
(© 2022 The Ecological Society of America.)

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies