Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Calcium carbonate precipitation by cave bacteria isolated from Kashmir Cave, Khyber Pakhtunkhwa, Pakistan.

Tytuł:
Calcium carbonate precipitation by cave bacteria isolated from Kashmir Cave, Khyber Pakhtunkhwa, Pakistan.
Autorzy:
Jan SU; Department of Microbiology, Quaid-i-Azam University, Islamabad, Pakistan.
Zada S; Department of Environmental Engineering, Guangdong Technion-Israel Institute of Technology, Shantou, China.
Rafiq M; Department of Microbiology, Balochistan University of IT, Engineering and Management Sciences, Quetta, Pakistan.
Khan I; Department of Microbiology, Quaid-i-Azam University, Islamabad, Pakistan.
Sajjad W; State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China.
Khan MA; Department of Works (civil), University of Buner, Buner, Pakistan.
Hasan F; Department of Microbiology, Quaid-i-Azam University, Islamabad, Pakistan.
Źródło:
Microscopy research and technique [Microsc Res Tech] 2022 Jul; Vol. 85 (7), pp. 2514-2525. Date of Electronic Publication: 2022 Apr 06.
Typ publikacji:
Journal Article
Język:
English
Imprint Name(s):
Original Publication: New York, NY : Wiley-Liss, c1992-
MeSH Terms:
Bacteria*/genetics
Calcium Carbonate*/chemistry
Chemical Precipitation ; Pakistan ; RNA, Ribosomal, 16S/genetics
References:
Almajed, A., Khodadadi Tirkolaei, H., & Kavazanjian, E., Jr. (2018). Baseline investigation on enzyme-induced calcium carbonate precipitation. Journal of Geotechnical and Geo-environmental Engineering, 144, 04018081.
Ausubel, F. M., Katagiri, F., Mindrinos, M., & Glazebrook, J. (1995). Use of Arabidopsis thaliana defense-related mutants to dissect the plant response to pathogens. Proceedings of the National Academy of Sciences, 92, 4189-4196.
Bansal, R., Dhami, N. K., Mukherjee, A., & Reddy, M. S. (2016). Biocalcification by halophilic bacteria for remediation of concrete structures in marine environment. Journal of Industrial Microbiology & Biotechnology, 43, 1497-1505.
Bharathi, N. (2014). Calcium carbonate precipitation with growth profile of isolated ureolytic strains. International Journal of Science and Research, 3, 2045-2049.
Braissant, O., Decho, A. W., Dupraz, C., Glunk, C., Przekop, K. M., & Visscher, P. T. (2007). Exopolymeric substances of sulfate-reducing bacteria: Interactions with calcium at alkaline pH and implication for formation of carbonate minerals. Geobiology, 5, 401-411.
Cacchio, P., Contento, R., Ercole, C., Cappuccio, G., Martinez, M. P., & Lepidi, A. (2004). Involvement of microorganisms in the formation of carbonate speleothems in the Cervo cave (L'Aquila-Italy). Geomicrobiology Journal, 21, 497-509.
Cacchio, P., Ercole, C., Cappuccio, G., & Lepidi, A. (2003). Calcium carbonate precipitation by bacterial strains isolated from a limestone cave and from a loamy soil. Geomicrobiology Journal, 20, 85-98.
Castainer, S., Metayer-Levrel, G. L., & Perthuisot, J. (2000). Bacterial roles in the precipitation of carbonate minerals. In R. E. Riding & S. M. Awramik (Eds.), Microbial sediments (pp. 32-39). Springer.
Castro-Alonso, M. J., Montanez-Hernandez, L. E., Sanchez-Munoz, M. A., Macias-Franco, M. R., Narayanasamy, R., & Balagurusamy, N. (2019). Microbially induced calcium carbonate precipitation (MICP) and its potential in bioconcrete: Microbiological and molecular concepts. Frontiers in Materials, 6, 126.
Chu, J., Stabnikov, V., & Ivanov, V. (2012). Microbially induced calcium carbonate precipitation on surface or in the bulk of soil. Geomicrobiology Journal, 29, 544-549.
De-Jong, J. T., Mortensen, B. M., Martinez, B. C., & Nelson, D. C. (2010). Bio-mediated soil improvement. Ecological Engineering, 36, 197-210.
Dhami, N. K., Reddy, M. S., & Mukherjee, A. (2014). Synergistic role of bacterial urease and carbonic anhydrase in carbonate mineralization. Applied Biochemistry and Biotechnology, 172, 2552-2561.
Enyedi, N. T., Makk, J., Kotai, L., Berenyi, B., Klebert, S., Sebestyen, Z., Molnar, Z., Borsodi, A. K., Leel-Ossy, S., & Demeny, A. (2020). Cave bacteria induced amorphous calcium carbonate formation. Scientific Reports, 10, 8696.
Ercole, C., Bozzelli, P., Altieri, F., Cacchio, P., & Del-Gallo, M. (2012). Calcium carbonate mineralization: Involvement of extracellular polymeric materials isolated from calcifying bacteria. Microscopy and Microanalysis, 18, 829-839.
Fang, C., Plaza, G., & Achal, V. (2021). A review on role of enzymes and microbes in healing cracks in cementitious materials. In Building materials for sustainable and ecological environment (pp. 151-162). Springer.
Fang, L., Niu, Q., Cheng, L., Jiang, J., Yu, Y. Y., Chu, J., Achal, V., & You, T. (2021). Ca-mediated alleviation of Cd2+ induced toxicity and improved Cd2+ biomineralization by Sporosarcina pasteurii. Science of The Total Environment, 787, 147627.
Fujita, Y., Ferris, F. G., Lawson, R. D., Colwell, F. S., & Smith, R. W. (2000). Subscribed content calcium carbonate precipitation by ureolytic subsurface bacteria. Geomicrobiology Journal, 17, 305-318.
Gat, D., Tsesarsky, M., Shamir, D., & Ronen, Z. (2014). Accelerated microbial induced CaCO3 precipitation in a defined coculture of ureolytic and non-ureolytic bacteria. Biogeosciences, 11, 2561-2569.
Görgen, S., Benzerara, K., Skouri-Panet, F., Gugger, M., Chauvat, F., & Cassier-Chauvat, C. (2021). The diversity of molecular mechanisms of carbonate biomineralization by bacteria. Discover Materials, 1, 1-20.
Gross, A., Kaplan, D., & Baker, K. (2007). Removal of chemical and microbiological contaminants from domestic greywater using a recycled vertical flow bioreactor (RVFB). Journal of Ecological Engineering, 31, 107-114.
Groth, I., Schumann, P., Laiz, L., Sanchez-Moral, S., Canaveras, J. C., & Saiz-Jimenez, C. (2001). Geomicrobiological study of the Grotta Dei Cervi, Porto Badisco, Italy. Geomicrobiology Journal, 18, 241-258.
Hammes, F., & Verstraete, W. (2002). Key roles of pH and calcium metabolism in microbial carbonate precipitation. Reviews in Environmental Sciences and Biotechnology, 1, 3-7.
Helmi, F. M., Elmitwalli, H. R., Elnagdy, S. M., & El-Hagrassy, A. F. (2016). Calcium carbonate precipitation induced by ureolytic bacteria bacillus licheniformis. Ecological Engineering, 90, 367-371.
Jain, S., Fang, C., & Achal, V. (2021). A critical review on microbial carbonate precipitation via denitrification process in building materials. Bioengineered, 12, 7529-7551.
Jiménez-López, C., Caballero, E., Huertas, F. J., & Romanek, C. S. (2001). Chemical, mineralogical and isotope behavior, and phase transformation during the precipitation of calcium carbonate minerals from intermediate ionic solution at 25°C. Geochimica et Cosmochimica Acta, 65, 3219-3231.
Jugnia, L. B., Cabral, A. R., & Greer, C. W. (2008). Biotic methane oxidation within an instrumented experimental landfill cover. Ecological Engineering, 33, 102-109.
Khan, I., Rafiq, M., Zada, S., Jamil, S. U. U., & Hasan, F. (2021). Calcium carbonate precipitation by rock dwelling bacteria in Murree Hills, lower Himalaya range Pakistan. Geomicrobiology Journal, 38, 231-236.
Kohnhauser, K. (2007). Introduction to geomicrobiology. Blackwell Publishing.
Konhauser, K., & Riding, R. (2012). Bacterial biomineralization. In A. H. Knoll, D. E. Canfield, & K. O. Konhauser (Eds.), Fundamentals of Geobiology (pp. 105-130). John Wiley and Sons.
Kremer, B., Kazmierczak, J., & Stal, L. J. (2008). Calcium carbonate precipitation in cyanobacterial mats from sandy tidal flats of the North Sea. Geobiology, 6, 46-56.
Laiz, L. (2003). Isolation of cave bacteria and substrate utilization at different temperatures. Geomicrobiology Journal, 20, 479-489.
Lange-Enyedi, N. T., Németh, P., Borsodi, A. K., Halmy, R., Czuppon, G., Kovács, I., Leél-Őssy, S., Demény, A., & Makk, J. (2021). Calcium carbonate precipitating cultivable bacteria from different speleothems of karst caves. Geomicrobiology Journal, 39, 1-16.
Lavoie, K. H., & Northup, D. E. (2005). Bacteria as indicators of human impact in caves. In G. T. Rea (Ed.), Proceedings of the National Cave and Karst management symposium proceedings (pp. 40-47). University of South Florida, USA.
Lee, Y. S., & Park, W. (2019). Enhanced calcium carbonate-biofilm complex formation by alkali-generating Lysinibacillus boronitolerans YS11 and alkaliphilic Bacillus sp. AK13. AMB Express, 9, 49.
Meier, A., Kastner, A., Harries, D., Wierzbicka-Wieczorek, M., Majzlan, J., Buchel, G., & Kothe, E. (2017). Calcium carbonates: Induced biomineralization with controlled macromorphology. Biogeosciences, 14, 4867-4878.
Mortensen, B. M., Haber, M. J., DeJong, J. T., Caslake, L. F., & Nelson, D. C. (2011). Effects of environmental factors on microbial induced calcium carbonate precipitation. Journal of Applied Microbiology, 111, 338-349.
Moya, A., Tambutté, S., Bertucci, A., Tambutté, E., Lotto, S., Vullo, D., & Zoccola, D. (2008). Carbonic anhydrase in the scleractinian coral Stylophora pistillata characterization, localization, and role in biomineralization. Journal of Biological Chemistry, 283, 25475-25484.
Park, S. J., & Ghim, S. Y. (2012). Applications and prospects of calcium carbonate forming bacteria in construction materials. Korean Journal of Microbiology and Biotechnology, 40, 169-179.
Porter, J. N. (1971). Prevalence and distribution of antibiotic-producing actinomycetes. Advances in Applied Microbiology, 14, 73-92.
Presentato, A., Piacenza, E., Turner, R. J., Zannoni, D., & Cappelletti, M. (2020). Processing of metals and metalloids by actinobacteria: Cell resistance mechanisms and synthesis of metal(loid)-based nanostructures. Microorganisms, 8, 2027.
Ronholm, J., Schumann, D., Sapers, H. M., Izawa, M., Applin, D., Berg, B., Mann, P., Vali, H., Flemming, R. L., & Cloutis, E. A. (2014). A mineralogical characterization of biogenic calcium carbonates precipitated by heterotrophic bacteria isolated from cryophilic polar regions. Geobiology, 12, 542-556.
Sajjad, W., Bhatti, T. M., & Hasan, F. (2016). Characterization of sulfur-oxidizing bacteria isolated from acid mine drainage and black shale of Khala Chatta, Haripur. Pakistan Journal of Botany, 48, 1253-1262.
Sajjad, W., Ilahi, N., Kang, S., Bahadur, A., Zada, S., & Iqbal, A. (2022). Endolithic microbes of rocks, their community, function and survival strategies. International Biodeterioration and Biodegradation, 169(2022), 105387.
Sajjad, W., Zheng, G., Ma, X., Xu, W., Ali, B., & Rafiq, M. (2020). Dissolution of Cu and Zn-bearing ore by indigenous iron-oxidizing bacterial consortia supplemented with dried bamboo sawdust and variations in bacterial structural dynamics: A new concept in bioleaching. Science of the Total Environment, 709, 136136.
Sajjad, W., Zheng, G., & Ma, X. (2019). Culture-dependent hunt and characterization of iron-oxidizing bacteria in Baiyin copper mine, China and their application in metals extraction. Journal of Basic Microbiology, 59, 323-336.
Sajjad, W., Zheng, G., Zhang, G., Ma, X., Xu, W., Ali, B., & Rafiq, M. (2018). Diversity of prokaryotic communities indigenous to acid mine drainage and related rocks from Baiyin open-pit copper mine Stope, China. Geomicrobiology, 35(7), 580-600.
Sajjad, W., Zheng, G., Zhang, G., Ma, X., Xu, W., & Khan, S. (2018). Bioleaching of copper and zinc bearing ore using consortia of indigenous iron oxidizing bacteria. Extremophiles, 22, 851-863.
Seifan, M., Samani, A. K., & Berenjian, A. (2017). New insights into the role of pH and aeration in the bacterial production of calcium carbonate (CaCO3). Applied Microbiology and Biotechnology, 101, 1-12.
Sprocati, A.R., Alisi, C., Tasso, F., Vedovato, E., Barbabietola, N., Cremisini, C. (2008). A microbiological survey of the Etruscan Mercareccia tomb (Italy): Contribution of microorganisms to detrioration and restoration. In 9th International Conference on NDT of Art, Jerusalem, Israel.
Tamura, K., Nei, M., & Kumar, S. (2004). Prospects for inferring very large phylogenies by using the neighbor joining method. Proceedings of the National Academy of Sciences (USA), 101, 11030-11035.
Wei, S., Cui, H., Jiang, Z., Liu, H., He, H., & Fang, N. (2015). Biomineralization processes of calcite induced by bacteria isolated from marine sediments. Brazilian Journal of Microbiology, 46, 455-464.
Xiong, Y.-W., Ju, X.-Y., Li, X.-W., Gong, Y., Xu, M.-J., Zhang, C.-M., Yuan, B., Lv, Z.-P., & Qin, S. (2020). Fermentation conditions optimization, purification, and antioxidant activity of exopolysaccharides obtained from the plant growth promoting endophytic actinobacterium Glutamicibacter halophytocola KLBMP 5180. International Journal of Biological Macromolecules, 153, 1176-1185.
Yang, Z., & Cheng, X. (2013). A performance study of high strength microbial mortar produced by low pressure grouting for the reinforcement of deteriorated masonry structures. Construction and Building Materials, 41, 505-515.
Zada, S., Naseem, A. A., Lee, S. J., Rafiq, M., Khan, I., Shah, A. A., & Hasan, F. (2016). Geochemical and mineralogical analysis of Kashmir cave (SMAST), Buner, Pakistan, and isolation and characterization of bacteria having antibacterial activity. Journal of Cave and Karst Studies, 78, 94-109.
Zada, S., Sajjad, W., Rafiq, M., Ali, S., Hu, Z., Wang, H., & Cai, R. (2021). Cave microbes as a potential source of drugs development in the modern era. Microbial Ecology, 25, 1-12.
Zada, S., Xie, J., Yang, M., Yang, X., Sajjad, W., Rafiq, M., Hasan, F., Hu, Z., & Wang, H. (2021). Composition and functional profiles of microbial communities in two geochemically and mineralogically different caves. Applied Microbiology and Biotechnology, 105, 8921-8936.
Ziad, W. (2006). Treasures of Kashmir Smast, followed by interview with Ijaz Khan. Oriental Numismatic Society Journal, 187, 16-31.
Grant Information:
Higher Education Commission of Pakistan; 2020PC0052 Chinese Academy of Sciences
Contributed Indexing:
Keywords: Kashmir cave; calcium carbonate precipitation; culturable cave bacteria; vaterite
Substance Nomenclature:
0 (RNA, Ribosomal, 16S)
H0G9379FGK (Calcium Carbonate)
Entry Date(s):
Date Created: 20220407 Date Completed: 20220621 Latest Revision: 20220621
Update Code:
20240105
DOI:
10.1002/jemt.24105
PMID:
35388567
Czasopismo naukowe
The participation of numerous physicochemical and biological functions maintains the evolution and expansion of the remarkable nature. Due to its vast applicability in several engineering disciplines, naturally occurring bio-mineralization or microbially induced calcium carbonate (MICP) precipitation is attracting more interest. Cave bacteria contribute to the precipitation of calcium carbonate (CaCO 3 ). In the present study, soil sediments were collected from Kashmir cave, KPK, Pakistan, and plated on B4 specific nutrients limited medium for bacterial isolation and the viable bacterial count was calculated. Three bacterial strains named GSN-11, TFSN-14, and TFSN-15 were capable of precipitating CaCO 3 . These bacterial isolates were identified through 16S rRNA gene sequencing and strain GSN-11 was identified as Bacillus toyonensis, TFSN-14 as Paracoccus limosus and TFSN-15 as Brevundimonas diminuta. Enhanced CaCO 3 precipitation potential of these bacteria strains was observed at 25°C and pH 5. The precipitated CaCO 3 was confirmed by scanning electron microscopy, X-ray powder diffraction, and Fourier transform infra-red spectroscopy. The findings showed that the precipitates were dominated by calcite, aragonite, and nanosize vaterite. Current research suggests that precipitation of CaCO 3 by proteolytic cave bacteria is widespread in Kashmir cave and these bacterial communities can actively contribute to the formation of CaCO 3 by enhancing the pH of the microenvironment. RESEARCH HIGHLIGHTS: Kashmir cave inhabit potentially active bacteria in terms of biogeochemical processes. Cave bacteria significantly precipitated CaCO 3 . Calcite, aragonite, and nanosize vaterite were dominant in precipitates.
(© 2022 Wiley Periodicals LLC.)

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies