Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Uncovering variable neoplasms between ATM protein-truncating and common missense variants using 394 694 UK Biobank exomes.

Tytuł:
Uncovering variable neoplasms between ATM protein-truncating and common missense variants using 394 694 UK Biobank exomes.
Autorzy:
Jiang X; Centre for Genomics Research, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK.
O'Neill A; Centre for Genomics Research, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK.
Smith KR; Centre for Genomics Research, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK.
Lai Z; Translational Medicine, Early Oncology R&D, AstraZeneca, Waltham, Massachusetts, USA.
Carss K; Centre for Genomics Research, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK.
Wang Q; Centre for Genomics Research, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Waltham, Massachusetts, USA.
Petrovski S; Centre for Genomics Research, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK.
Źródło:
Genes, chromosomes & cancer [Genes Chromosomes Cancer] 2022 Sep; Vol. 61 (9), pp. 523-529. Date of Electronic Publication: 2022 Apr 16.
Typ publikacji:
Journal Article; Research Support, Non-U.S. Gov't
Język:
English
Imprint Name(s):
Publication: New York, NY : Wiley-Liss
Original Publication: New York : A.R. Liss, c1989-
MeSH Terms:
Ataxia Telangiectasia Mutated Proteins*/genetics
Breast Neoplasms*/genetics
Mutation, Missense*
Neoplasms*/genetics
Biological Specimen Banks ; Cell Cycle Proteins/genetics ; DNA-Binding Proteins/genetics ; Exome ; Female ; Genetic Predisposition to Disease ; Humans ; United Kingdom
References:
Rothblum-Oviatt C, Wright J, Lefton-Greif MA, McGrath-Morrow SA, Crawford TO, Lederman HM. Ataxia telangiectasia: a review. Orphanet J Rare Dis. 2016;11(1):159. doi:10.1186/s13023-016-0543-7.
Weigelt B, Bi R, Kumar R, et al. The landscape of somatic genetic alterations in breast cancers from ATM germline mutation carriers. J Natl Cancer Inst. 2018;110(9):1030-1034. doi:10.1093/jnci/djy028.
Easton DF, Pharoah PDP, Antoniou AC, et al. Gene-panel sequencing and the prediction of breast-cancer risk. N Engl J Med. 2015;372(23):2243-2257. doi:10.1056/NEJMsr1501341.
Wokołorczyk D, Kluźniak W, Huzarski T, et al. The polish hereditary prostate cancer consortium mutations in ATM, NBN and BRCA2 predispose to aggressive prostate cancer in Poland. Int J Cancer. 2020;147(10):2793-2800. doi:10.1002/ijc.33272.
Schaid DJ, McDonnell SK, FitzGerald LM, et al. Two-stage study of familial prostate cancer by whole-exome sequencing and custom capture identifies 10 novel genes associated with the risk of prostate cancer. Eur Urol. 2021;79(3):353-361. doi:10.1016/j.eururo.2020.07.038.
Hu C, Hart SN, Polley EC, et al. Association between inherited germline mutations in cancer predisposition genes and risk of pancreatic cancer. JAMA. 2018;319(23):2401-2409. doi:10.1001/jama.2018.6228.
Helgason H, Rafnar T, Olafsdottir HS, et al. Loss-of-function variants in ATM confer risk of gastric cancer. Nat Genet. 2015;47(8):906-910. doi:10.1038/ng.3342.
Tavtigian SV, Oefner PJ, Babikyan D, et al. Rare, evolutionarily unlikely missense substitutions in ATM confer increased risk of breast cancer. Am J Hum Genet. 2009;85(4):427-446. doi:10.1016/j.ajhg.2009.08.018.
Hall MJ, Bernhisel R, Hughes E, et al. Germline pathogenic variants in the ataxia telangiectasia mutated (ATM) gene are associated with high and moderate risks for multiple cancers. Cancer Prev Res (Phila). 2021;14(4):433-440. doi:10.1158/1940-6207.CAPR-20-0448.
Dombernowsky SL, Weischer M, Allin KH, Bojesen SE, Tybjjrg-Hansen A, Nordestgaard BG. Risk of cancer by ATM missense mutations in the general population. J Clin Oncol. 2016;21:3057-3062. doi:10.1200/JCO.2007.14.6613.
Cirulli ET, White S, Read RW, et al. Genome-wide rare variant analysis for thousands of phenotypes in over 70,000 exomes from two cohorts. Nat Commun. 2020;11(1):542. doi:10.1038/s41467-020-14288-y.
Szustakowski JD, Balasubramanian S, Kvikstad E, et al. Advancing human genetics research and drug discovery through exome sequencing of the UK Biobank. Nat Genet. 2021;53(7):942-948. doi:10.1038/s41588-021-00885-0.
Van Hout CV, Tachmazidou I, Backman JD, et al. Exome sequencing and characterization of 49,960 individuals in the UK Biobank. Nature. 2020;586(7831):749-756. doi:10.1038/s41586-020-2853-0.
Wang Q, Dhindsa RS, Carss K, et al. Rare variant contribution to human disease in 281,104 UK Biobank exomes. Nature. 2021;10:1-9. doi:10.1038/s41586-021-03855-y.
Bycroft C, Freeman C, Petkova D, et al. The UK Biobank resource with deep phenotyping and genomic data. Nature. 2018;562(7726):203-209. doi:10.1038/s41586-018-0579-z.
Petrovski S, Todd JL, Durheim MT, et al. An exome sequencing study to assess the role of rare genetic variation in pulmonary fibrosis. Am J Respir Crit Care Med. 2017;196(1):82-93. doi:10.1164/rccm.201610-2088OC.
Povysil G, Petrovski S, Hostyk J, Aggarwal V, Allen AS, Goldstein DB. Rare-variant collapsing analyses for complex traits: guidelines and applications. Nat Rev Genet. 2019;20(12):747-759. doi:10.1038/s41576-019-0177-4.
Yang J, Ferreira T, Morris AP, et al. Conditional and joint multiple-SNP analysis of GWAS summary statistics identifies additional variants influencing complex traits. Nat Genet. 2012;44(4):369-375. doi:10.1038/ng.2213.
Bland JM, Altman DG. The odds ratio. BMJ. 2000;320(7247):1468. doi:10.1136/bmj.320.7247.1468.
DeBoever C, Tanigawa Y, Lindholm ME, et al. Medical relevance of protein-truncating variants across 337,205 individuals in the UK Biobank study. Nat Commun. 2018;9(1):1612. doi:10.1038/s41467-018-03910-9.
Goldgar DE, Healey S, Dowty JG, et al. Rare variants in the ATM gene and risk of breast cancer. Breast Cancer Res. 2011;13(4):R73. doi:10.1186/bcr2919.
Aloraifi F, McCartan D, McDevitt T, Green AJ, Bracken A, Geraghty J. Protein-truncating variants in moderate-risk breast cancer susceptibility genes: a meta-analysis of high-risk case-control screening studies. Cancer Genet. 2015;208(9):455-463. doi:10.1016/j.cancergen.2015.06.001.
Roberts NJ, Norris AL, Petersen GM, et al. Whole genome sequencing defines the genetic heterogeneity of familial pancreatic cancer. Cancer Discov. 2016;6(2):166-175. doi:10.1158/2159-8290.CD-15-0402.
Neeb A, Herranz N, Arce-Gallego S, et al. Advanced prostate cancer with ATM loss: PARP and ATR inhibitors. Eur Urol. 2021;79(2):200-211. doi:10.1016/j.eururo.2020.10.029.
FinnGen. FinnGen documentation of R5 release. Published Online 2021. https://finngen.gitbook.io/documentation/.
Rafnar T, Gunnarsson B, Stefansson OA, et al. Variants associating with uterine leiomyoma highlight genetic background shared by various cancers and hormone-related traits. Nat Commun. 2018;9(1):3636. doi:10.1038/s41467-018-05428-6.
Schumacher FR, Al Olama AA, Berndt SI, et al. Association analyses of more than 140,000 men identify 63 new prostate cancer susceptibility loci. Nat Genet. 2018;50(7):928-936. doi:10.1038/s41588-018-0142-8.
Qian D, Liu H, Zhao L, et al. A pleiotropic ATM variant (rs1800057 C>G) is associated with risk of multiple cancers. Carcinogenesis. 2022;43(1):60-66. doi:10.1093/carcin/bgab092.
Landi MT, Bishop DT, MacGregor S, et al. Genome-wide association meta-analyses combining multiple risk phenotypes provide insights into the genetic architecture of cutaneous melanoma susceptibility. Nat Genet. 2020;52(5):494-504. doi:10.1038/s41588-020-0611-8.
Gu Y, Shi J, Qiu S, et al. Association between ATM rs1801516 polymorphism and cancer susceptibility: a meta-analysis involving 12,879 cases and 18,054 controls. BMC Cancer. 2018;18(1):1060. doi:10.1186/s12885-018-4941-1.
Li Y, Shi P, Jiang D. Polymorphism rs1801516 (G > a) in the ATM gene is not associated with overall cancer risk: an updated meta-analysis. J Int Med Res. 2020;48(7):0300060520937618. doi:10.1177/0300060520937618.
Stankovic T, Stewart GS, Byrd P, Fegan C, Moss PAH, Taylor AMR. ATM mutations in sporadic lymphoid tumours. Leuk Lymphoma. 2002;43(8):1563-1571. doi:10.1080/1042819021000002884.
Tiao G, Improgo MR, Kasar S, et al. Rare germline variants in ATM are associated with chronic lymphocytic leukemia. Leukemia. 2017;31(10):2244-2247. doi:10.1038/leu.2017.201.
Pritchard CC, Mateo J, Walsh MF, et al. Inherited DNA-repair gene mutations in men with metastatic prostate cancer. N Engl J Med. 2016;375(5):443-453. doi:10.1056/NEJMoa1603144.
Brandão A, Paulo P, Teixeira MR. Hereditary predisposition to prostate cancer: from genetics to clinical implications. Int J Mol Sci. 2020;21(14):E5036. doi:10.3390/ijms21145036.
Nguyen-Dumont T, Dowty JG, MacInnis RJ, et al. Rare germline pathogenic variants identified by multigene panel testing and the risk of aggressive prostate cancer. Cancer. 2021;13(7):1495. doi:10.3390/cancers13071495.
Grant Information:
MC_PC_17228 United Kingdom MRC_ Medical Research Council; MC_QA137853 United Kingdom MRC_ Medical Research Council
Contributed Indexing:
Keywords: ATM; UK Biobank; missense variants; neoplasms; protein-truncating variants; whole-exome sequencing
Substance Nomenclature:
0 (Cell Cycle Proteins)
0 (DNA-Binding Proteins)
EC 2.7.11.1 (ATM protein, human)
EC 2.7.11.1 (Ataxia Telangiectasia Mutated Proteins)
Entry Date(s):
Date Created: 20220408 Date Completed: 20220712 Latest Revision: 20230802
Update Code:
20240105
DOI:
10.1002/gcc.23042
PMID:
35394676
Czasopismo naukowe
As an essential regulator of DNA damage, ataxia-telangiectasia mutated (ATM) gene has been widely studied in oncology. However, the independent effects of ATM missense variants and protein-truncating variants (PTVs) on neoplasms have not been heavily studied. Whole-exome sequencing data and the clinical health records of 394,694 UK Biobank European participants were used in this analysis. We mined genetic associations from gene-level and variant-level phenome-wide association studies, and conducted a variant-level conditional association study to test whether the effects of ATM missense variants on neoplasms were independent of ATM PTV carrier status. The gene-level PTV collapsing analysis was consistent with established ATM PTV literature showing that the aggregated impact of 286 ATM PTVs significantly (p < 2 × 10 -9 ) associated with 31 malignant neoplasm phenotypes. Of 773 distinct protein-coding variants in ATM, three individual missense variants significantly (p < 2 × 10 -9 ) associated with nine phenotypes. Remarkably, although the nine phenotypes were tumor-related, none overlapped the established ATM PTV-linked malignancies. A subsequent conditional analysis identified that the missense signals were acting independently of the known clinically relevant ATM PTVs.
(© 2022 Wiley Periodicals LLC.)

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies