Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Endurance exercise attenuates juvenile irradiation-induced skeletal muscle functional decline and mitochondrial stress.

Tytuł:
Endurance exercise attenuates juvenile irradiation-induced skeletal muscle functional decline and mitochondrial stress.
Autorzy:
O'Connor TN; Department of Biomedical Genetics, Genetics, Development and Stem Cells Graduate Program, University of Rochester Medical Center, Rochester, NY, USA.; Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, NY, USA.
Kallenbach JG; Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, NY, USA.; Department of Biomedical Engineering, University of Rochester Medical Center, Rochester, NY, USA.
Orciuoli HM; Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, NY, USA.; Department of Biology, Biological Sciences, University of Rochester, Rochester, NY, USA.
Paris ND; Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, NY, USA.
Bachman JF; Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, NY, USA.; Department of Pathology and Laboratory Medicine, Cell Biology of Disease Graduate Program, University of Rochester Medical Center, Rochester, NY, USA.
Johnston CJ; Department of Pediatrics, University of Rochester Medical Center, Rochester, NY, USA.
Hernady E; Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, USA.
Williams JP; Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, USA.
Dirksen RT; Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, NY, USA.
Chakkalakal JV; Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, NY, USA. .; Department of Biomedical Engineering, University of Rochester Medical Center, Rochester, NY, USA. .; Department of Orthopaedic Surgery and Cell Biology, Duke University, Durham, NC, USA. .
Źródło:
Skeletal muscle [Skelet Muscle] 2022 Apr 12; Vol. 12 (1), pp. 8. Date of Electronic Publication: 2022 Apr 12.
Typ publikacji:
Journal Article; Research Support, N.I.H., Extramural; Research Support, Non-U.S. Gov't
Język:
English
Imprint Name(s):
Original Publication: [London] : BioMed Central Ltd., 2011-
MeSH Terms:
Motor Activity*/physiology
Muscle, Skeletal*/metabolism
Animals ; Male ; Mice ; Mice, Inbred C57BL ; Mitochondria/metabolism ; Reactive Oxygen Species/metabolism ; Sarcoplasmic Reticulum/metabolism
References:
Open Access Maced J Med Sci. 2017 Jul 18;5(4):521-525. (PMID: 28785349)
Elife. 2017 Jun 06;6:. (PMID: 28583253)
Cold Spring Harb Perspect Biol. 2011 Feb 01;3(2):. (PMID: 21421919)
Redox Biol. 2014 Feb 28;2:832-46. (PMID: 25009785)
Mol Biol Cell. 2009 Feb;20(3):1058-67. (PMID: 19037102)
Exerc Sport Sci Rev. 2009 Jan;37(1):29-35. (PMID: 19098522)
Front Physiol. 2019 Sep 13;10:1142. (PMID: 31607937)
Int J Radiat Oncol Biol Phys. 2004 Sep 1;60(1):265-74. (PMID: 15337565)
Nat Med. 2018 Sep;24(9):1360-1371. (PMID: 30061698)
EMBO J. 2012 May 2;31(9):2117-33. (PMID: 22433842)
Cancer. 2015 May 15;121(10):1540-7. (PMID: 25529481)
Cell. 2008 Apr 4;133(1):53-65. (PMID: 18394989)
Physiol Rev. 2008 Oct;88(4):1243-76. (PMID: 18923182)
Immunity. 2017 Sep 19;47(3):421-434.e3. (PMID: 28930658)
Int J Radiat Biol Relat Stud Phys Chem Med. 1980 Jun;37(6):621-31. (PMID: 6968297)
Physiol Behav. 2017 Mar 1;170:133-140. (PMID: 28039074)
Nat Med. 2012 Jan 08;18(2):244-51. (PMID: 22231556)
Elife. 2015 Aug 27;4:. (PMID: 26312504)
Cancer Lett. 2015 Nov 28;368(2):238-45. (PMID: 25819030)
Cancer Lett. 2012 Dec 31;327(1-2):48-60. (PMID: 22182453)
Pediatr Blood Cancer. 2007 Dec;49(7):975-81. (PMID: 17091482)
J Natl Cancer Inst. 2021 Nov 2;113(11):1570-1580. (PMID: 33871611)
Ann Intern Med. 2005 Nov 1;143(9):639-47. (PMID: 16263886)
Nat Commun. 2021 Dec 10;12(1):7219. (PMID: 34893614)
Proc Natl Acad Sci U S A. 2006 Oct 10;103(41):15038-43. (PMID: 17015830)
Nat Commun. 2017 Mar 24;8:14659. (PMID: 28337975)
J Vis Exp. 2013 Feb 09;(72):. (PMID: 23426237)
FASEB J. 2017 Aug;31(8):3649-3662. (PMID: 28465322)
J Pathol. 2020 Apr;250(5):647-655. (PMID: 31990369)
Biochem Biophys Res Commun. 2017 Jan 15;482(3):419-425. (PMID: 28212725)
Am J Physiol Cell Physiol. 2004 Oct;287(4):C817-33. (PMID: 15355853)
Metabolites. 2021 Jun 28;11(7):. (PMID: 34203260)
Arch Biochem Biophys. 2019 Mar 15;663:22-33. (PMID: 30578752)
Development. 2018 Oct 25;145(20):. (PMID: 30305290)
Skelet Muscle. 2015 Nov 16;5:41. (PMID: 26579218)
J Cachexia Sarcopenia Muscle. 2022 Feb;13(1):296-310. (PMID: 34997696)
J Gen Physiol. 2019 Apr 1;151(4):567-577. (PMID: 30635368)
Free Radic Biol Med. 2012 Jul 15;53(2):260-70. (PMID: 22580337)
iScience. 2020 Nov 02;23(11):101760. (PMID: 33241204)
Cell Metab. 2017 Mar 7;25(3):581-592. (PMID: 28273480)
Braz J Med Biol Res. 2018 Dec 10;52(1):e7830. (PMID: 30539969)
Free Radic Biol Med. 2016 Sep;98:56-67. (PMID: 27032709)
Cell Calcium. 2018 Dec;76:101-115. (PMID: 30414508)
Elife. 2019 Oct 28;8:. (PMID: 31657717)
PLoS One. 2019 Jan 25;14(1):e0210863. (PMID: 30682077)
Aging Cell. 2010 Dec;9(6):958-70. (PMID: 20961389)
Muscle Nerve. 2011 Jan;43(1):58-64. (PMID: 21171096)
Free Radic Biol Med. 2013 Dec;65:607-619. (PMID: 23892359)
J Biol Chem. 2003 Jun 20;278(25):22600-8. (PMID: 12704193)
Antioxid Redox Signal. 2014 Jul 1;21(1):154-76. (PMID: 24450966)
FEBS J. 2021 Apr 2;:. (PMID: 33811430)
Oxid Med Cell Longev. 2017;2017:6936897. (PMID: 29062464)
Sci Rep. 2017 Oct 27;7(1):14286. (PMID: 29079778)
Biophys Rev. 2020 Feb;12(1):143-153. (PMID: 31950344)
Biol Res. 2004;37(4):565-75. (PMID: 15709683)
Sci Rep. 2020 Nov 11;10(1):19501. (PMID: 33177579)
Int J Med Sci. 2012;9(3):193-9. (PMID: 22408567)
Am J Physiol Cell Physiol. 2018 Mar 1;314(3):C323-C333. (PMID: 29212769)
Grant Information:
R01 AR053349 United States AR NIAMS NIH HHS; S10 OD021548 United States OD NIH HHS; 1S10OD021548-01 United States NH NIH HHS; R01 CA220467 United States CA NCI NIH HHS; R01 AG051456 United States AG NIA NIH HHS; R01AG051456 United States AG NIA NIH HHS; R01AR053349 United States AR NIAMS NIH HHS; R01CA220467 United States CA NCI NIH HHS
Contributed Indexing:
Keywords: Calcium handling; Exercise; Mitochondria; Muscle; Oxidative/nitrosative stress; Physiology; Radiation
Substance Nomenclature:
0 (Reactive Oxygen Species)
Entry Date(s):
Date Created: 20220413 Date Completed: 20220414 Latest Revision: 20240403
Update Code:
20240403
PubMed Central ID:
PMC9004104
DOI:
10.1186/s13395-022-00291-y
PMID:
35414122
Czasopismo naukowe
Background: Radiotherapy is commonly used to treat childhood cancers and can have adverse effects on muscle function, but the underlying mechanisms have yet to be fully elucidated. We hypothesized that endurance exercise following radiation treatment would improve skeletal muscle function.
Methods: We utilized the Small Animal Radiation Research Platform (SARRP) to irradiate juvenile male mice with a clinically relevant fractionated dose of 3× (every other day over 5 days) 8.2 Gy X-ray irradiation locally from the knee to footpad region of the right hindlimb. Mice were then singly housed for 1 month in cages equipped with either locked or free-spinning voluntary running wheels. Ex vivo muscle contractile function, RT-qPCR analyses, resting cytosolic and sarcoplasmic reticulum (SR) store Ca 2+ levels, mitochondrial reactive oxygen species levels (MitoSOX), and immunohistochemical and biochemical analyses of muscle samples were conducted to assess the muscle pathology and the relative therapeutic impact of voluntary wheel running (VWR).
Results: Irradiation reduced fast-twitch extensor digitorum longus (EDL) muscle-specific force by 27% compared to that of non-irradiated mice, while VWR post-irradiation improved muscle-specific force by 37%. Radiation treatment similarly reduced slow-twitch soleus muscle-specific force by 14% compared to that of non-irradiated mice, while VWR post-irradiation improved specific force by 18%. We assessed intracellular Ca 2+ regulation, oxidative stress, and mitochondrial homeostasis as potential mechanisms of radiation-induced pathology and exercise-mediated rescue. We found a significant reduction in resting cytosolic Ca 2+ concentration following irradiation in sedentary mice. Intriguingly, however, SR Ca 2+ store content was increased in myofibers from irradiated mice post-VWR compared to mice that remained sedentary. We observed a 73% elevation in the overall protein oxidization in muscle post-irradiation, while VWR reduced protein nitrosylation by 35% and mitochondrial reactive oxygen species (ROS) production by 50%. Finally, we found that VWR significantly increased the expression of PGC1α at both the transcript and protein levels, consistent with an exercise-dependent increase in mitochondrial biogenesis.
Conclusions: Juvenile irradiation stunted muscle development, disrupted proper Ca 2+ handling, damaged mitochondria, and increased oxidative and nitrosative stress, paralleling significant deficits in muscle force production. Exercise mitigated aberrant Ca 2+ handling, mitochondrial homeostasis, and increased oxidative and nitrosative stress in a manner that correlated with improved skeletal muscle function after radiation.
(© 2022. The Author(s).)
Zaloguj się, aby uzyskać dostęp do pełnego tekstu.

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies