Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

ATG16L2 inhibits NLRP3 inflammasome activation through promoting ATG5-12-16L1 complex assembly and autophagy.

Tytuł:
ATG16L2 inhibits NLRP3 inflammasome activation through promoting ATG5-12-16L1 complex assembly and autophagy.
Autorzy:
Wang D; Department of Gastrointestinal Surgery, Renji Hospital Affiliated, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
Yuan T; Department of Gastrointestinal Surgery, Renji Hospital Affiliated, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
Liu J; Hongqiao International Institute of Medicine, Shanghai Tongren Hospital/Faculty of Basic Medicine, Shanghai Institute of Immunology, Department of Immunology and Microbiology, Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
Wen Z; Department of Gastrointestinal Surgery, Renji Hospital Affiliated, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
Shen Y; Department of Gastrointestinal Surgery, Renji Hospital Affiliated, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
Tang J; Department of Gastrointestinal Surgery, Renji Hospital Affiliated, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
Wang Z; Department of Gastrointestinal Surgery, Renji Hospital Affiliated, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
Wu X; Hongqiao International Institute of Medicine, Shanghai Tongren Hospital/Faculty of Basic Medicine, Shanghai Institute of Immunology, Department of Immunology and Microbiology, Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
Źródło:
European journal of immunology [Eur J Immunol] 2022 Aug; Vol. 52 (8), pp. 1321-1334. Date of Electronic Publication: 2022 Apr 28.
Typ publikacji:
Journal Article; Research Support, Non-U.S. Gov't
Język:
English
Imprint Name(s):
Publication: <2005->: Weinheim : Wiley-VCH
Original Publication: Weinheim, Verlag Chemie GmbH.
MeSH Terms:
Autophagy-Related Protein 5*/genetics
Autophagy-Related Protein 5*/metabolism
Carrier Proteins*/genetics
Carrier Proteins*/metabolism
Inflammasomes*/metabolism
NLR Family, Pyrin Domain-Containing 3 Protein*/genetics
NLR Family, Pyrin Domain-Containing 3 Protein*/metabolism
Animals ; Autophagy ; Macrophages/metabolism ; Mice ; Mice, Inbred C57BL ; Mice, Knockout
References:
Don Wai Luu, L., Kaakoush, N. O., Castaño-Rodríguez, N., The role of ATG16L2 in autophagy and disease. Autophagy 2022. 1-10. https://doi.org/10.1080/15548627.2022.2042783.
Ishibashi, K., Fujita, N., Kanno, E., Omori, H., Yoshimori, T., Itoh, T. and Fukuda, M., Atg16L2, a novel isoform of mammalian Atg16L that is not essential for canonical autophagy despite forming an Atg12-5-16L2 complex. Autophagy 2011. 7: 1500-1513.
Khor, B., Conway, K. L., Omar, A. S., Biton, M., Haber, A. L., Rogel, N., Baxt, L. A. et al., Distinct tissue-specific roles for the disease-associated autophagy genes ATG16L2 and ATG16L1. J. Immunol. 2019. 203: 1820-1829.
Yin, L., Liu, J., Dong, H., Xu, E., Qiao, Y., Wang, L., Zhang, L. et al., Autophagy-related gene16L2, a potential serum biomarker of multiple sclerosis evaluated by bead-based proteomic technology. Neurosci. Lett. 2014. 562: 34-38.
Martin, B. N., Wang, C., Willette-Brown, J., Herjan, T., Gulen, M. F., Zhou, H., Bulek, K., Franchi, L., Sato, T., Alnemri, E. S., Narla, G., Zhong, X.-P., Thomas, J., Klinman, D., Fitzgerald, K. A., Karin, M., Nuñez, G., Dubyak, G., Hu, Y., Li, X. IKKα negatively regulates ASC-dependent inflammasome activation. Nature Communications 2014. 5: https://doi.org/10.1038/ncomms5977.
Huang, Y., Chuang, A. Y. and Ratovitski, E. A., Phospho-ΔNp63α/miR-885-3p axis in tumor cell life and cell death upon cisplatin exposure. Cell Cycle 2011. 10: 3938-3947.
Li, N., Wu, X., Holzer, R. G., Lee, J.-H., Todoric, J., Park, E.-J., Ogata, H., Gukovskaya, A. S. et al., Loss of acinar cell IKKα triggers spontaneous pancreatitis in mice. J. Clin. Invest. 2013. 123: 2231-2243.
Diamanti, M. A., Gupta, J., Bennecke, M., De Oliveira, T., Ramakrishnan, M., Braczynski, A. K., Richter, B., Beli, P. et al., IKKα controls ATG16L1 degradation to prevent ER stress during inflammation. J. Exp. Med. 2017. 214: 423-437.
Martinon, F., Burns, K. and Tschopp, J., The inflammasome: a molecular platform triggering activation of inflammatory caspases and processing of proIL-beta. Mol. Cell. 2002. 10: 417-426.
Broz, P. and Dixit, V. M., Inflammasomes: mechanism of assembly, regulation and signalling. Nat. Rev. Immunol. 2016. 16: 407-420.
Pandey, A., Shen, C., Feng, S. and Man, S. M., Cell biology of inflammasome activation. Trends Cell Biol. 2021. 31: 924-939.
Sutterwala, F. S., Haasken, S. and Cassel, S. L., Mechanism of NLRP3 inflammasome activation. Ann. N. Y. Acad. Sci. 2014. 1319: 82-95.
Latz, E., The inflammasomes: mechanisms of activation and function. Curr. Opin. Immunol. 2010. 22: 28-33.
Schroder, K., Zhou, R. and Tschopp, J., The NLRP3 inflammasome: a sensor for metabolic danger? Science 2010. 327: 296-300.
Swanson, K. V., Deng, M. and Ting, J. P. Y., The NLRP3 inflammasome: molecular activation and regulation to therapeutics. Nat. Rev. Immunol. 2019. 19: 477-489.
Shintani, T. and Klionsky, D. J., Autophagy in health and disease: a double-edged sword. Science 2004. 306: 990-995.
Ma, Y., Galluzzi, L., Zitvogel, L. and Kroemer, G., Autophagy and cellular immune responses. Immunity 2013. 39: 211-227.
Deretic, V. and Klionsky, D. J., Autophagy and inflammation: a special review issue. Autophagy 2018. 14: 179-180.
Shi, C.-S., Shenderov, K., Huang, N.-N., Kabat, J., Abu-Asab, M., Fitzgerald, K. A., Sher, A. and Kehrl, J. H., Activation of autophagy by inflammatory signals limits IL-1β production by targeting ubiquitinated inflammasomes for destruction. Nature Immunol. 2012. 13: 255-263.
Zhong, Z., Umemura, A., Sanchez-Lopez, E., Liang, S., Shalapour, S., Wong, J., He, F. et al., NF-κB restricts inflammasome activation via elimination of damaged mitochondria. Cell 2016. 164: 896-910.
Rubinsztein, D. C., Cuervo, A. M., Ravikumar, B., Sarkar, S., Korolchuk, V., Kaushik, S. and Klionsky, D. J., In search of an “autophagomometer”. Autophagy 2009. 5: 585-589.
Xu, Y., Jagannath, C., Liu, X.-D., Sharafkhaneh, A., Kolodziejska, K. E. and Eissa, N. T., Toll-like receptor 4 is a sensor for autophagy associated with innate immunity. Immunity 2007. 27: 135-144.
Fernandes-Alnemri, T., Wu, J., Yu, J. W., Datta, P., Miller, B., Jankowski, W., Rosenberg, S. et al., The pyroptosome: a supramolecular assembly of ASC dimers mediating inflammatory cell death via caspase-1 activation. Cell Death Differ. 2007. 14: 1590-1604.
Ishibashi, K., Fujita, N., Kanno, E., Omori, H., Yoshimori, T., Itoh, T. and Fukuda, M., Atg16L2, a novel isoform of mammalian Atg16L that is not essential for canonical autophagy despite forming an Atg12-5-16L2 complex. Autophagy 2014. 7: 1500-1513.
Biasizzo, M. and Kopitar-Jerala, N., Interplay between NLRP3 inflammasome and autophagy. Front. Immunol. 2020. 11: 1-14.
Zhou, R., Yazdi, A. S., Menu, P. and Tschopp, J., A role for mitochondria in NLRP3 inflammasome activation. Nature 2011. 469: 221-225.
Weinberg Samuel, E., Sena, L. A. and Chandel, N. S., Mitochondria in the regulation of innate and adaptive immunity. Immunity 2015. 42: 406-417.
Zhong, Z., Liang, S., Sanchez-Lopez, E., He, F., Shalapour, S., Lin, X. J., Wong, J. et al., New mitochondrial DNA synthesis enables NLRP3 inflammasome activation. Nature 2018. 560: 198-203.
Coll, R. C., Robertson, A. A. B., Chae, J. J., Higgins, S. C., Muñoz-Planillo, R., Inserra, M. C., Vetter, I., Dungan, L. S. et al., A small-molecule inhibitor of the NLRP3 inflammasome for the treatment of inflammatory diseases. Nat. Med. 2015. 21: 248-255.
Wible, D. J., Chao, H.-P., Tang, D. G. and Bratton, S. B., ATG5 cancer mutations and alternative mRNA splicing reveal a conjugation switch that regulates ATG12-ATG5-ATG16L1 complex assembly and autophagy. Cell Discov. 2019. 5: 42.
Lessard, C. J., Sajuthi, S., Zhao, J., Kim, K., Ice, J. A., Li, H., Ainsworth, H. et al., Identification of a systemic lupus erythematosus risk locus spanning ATG16L2, FCHSD2, and P2RY2 in Koreans. Arthritis Rheumatol. 2016. 68: 1197-1209.
Yang, S.-K., Hong, M., Zhao, W., Jung, Y., Baek, J., Tayebi, N., Kim, K. M. et al., Genome-wide association study of Crohn's disease in Koreans revealed three new susceptibility loci and common attributes of genetic susceptibility across ethnic populations. Gut 2014. 63: 80-87.
Contributed Indexing:
Keywords: ATG16L2; Autophagy; Colitis; Mitochondria; NLRP3
Substance Nomenclature:
0 (Atg16L2 protein, mouse)
0 (Atg5 protein, mouse)
0 (Autophagy-Related Protein 5)
0 (Carrier Proteins)
0 (Inflammasomes)
0 (NLR Family, Pyrin Domain-Containing 3 Protein)
0 (Nlrp3 protein, mouse)
Entry Date(s):
Date Created: 20220415 Date Completed: 20220808 Latest Revision: 20220826
Update Code:
20240105
DOI:
10.1002/eji.202149764
PMID:
35426127
Czasopismo naukowe
NLRP3 inflammasome activation is regulated by autophagy, a process tightly controlled by the ATG16L family proteins. However, the inside mechanisms remain elusive. Although the autophagy-related protein ATG16L1 has been well characterized, regulation and biological functions of its close homolog ATG16L2 still remain elusive. Here we report that ATG16L2 deficiency attenuates LPS-induced autophagy flux in macrophages through mediating ATG5-12-16L1 complex assembly. Importantly, NLRP3 inflammasome activation is elevated in ATG16L2-deficient macrophages, which also have defects in mitochondrial integrity and respiration. Finally, ATG16l2 knockout mice are more susceptible to DSS-induced intestinal damage, which can be ameliorated by inhibition of NLRP3. Collectively, our data demonstrate that ATG16L2 positively regulates autophagy and ATG16L2 could be a potential target for manipulating aberrant NLRP3 inflammasome activation induced inflammatory diseases.
(© 2022 Wiley-VCH GmbH.)

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies