Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Effects of phenological mismatch under warming are modified by community context.

Tytuł:
Effects of phenological mismatch under warming are modified by community context.
Autorzy:
Pardikes NA; Biology Centre of the Czech Academy of Sciences, Institute of Entomology, Ceske Budejovice, Czech Republic.; Department of Life and Earth Sciences, Georgia State University-Perimeter College, Clarkston, Georgia, USA.
Revilla TA; Biology Centre of the Czech Academy of Sciences, Institute of Entomology, Ceske Budejovice, Czech Republic.; Faculty of Science, University of South Bohemia, Ceske Budejovice, Czech Republic.
Lue CH; Biology Centre of the Czech Academy of Sciences, Institute of Entomology, Ceske Budejovice, Czech Republic.; Biology Department, Brooklyn College, City University of New York (CUNY), Brooklyn, New York, USA.
Thierry M; Biology Centre of the Czech Academy of Sciences, Institute of Entomology, Ceske Budejovice, Czech Republic.; Faculty of Science, University of South Bohemia, Ceske Budejovice, Czech Republic.
Souto-Vilarós D; Biology Centre of the Czech Academy of Sciences, Institute of Entomology, Ceske Budejovice, Czech Republic.
Hrcek J; Biology Centre of the Czech Academy of Sciences, Institute of Entomology, Ceske Budejovice, Czech Republic.; Faculty of Science, University of South Bohemia, Ceske Budejovice, Czech Republic.
Źródło:
Global change biology [Glob Chang Biol] 2022 Jul; Vol. 28 (13), pp. 4013-4026. Date of Electronic Publication: 2022 May 04.
Typ publikacji:
Journal Article
Język:
English
Imprint Name(s):
Publication: : Oxford : Blackwell Pub.
Original Publication: Oxford, UK : Blackwell Science, 1995-
MeSH Terms:
Climate Change*
Global Warming*
Animals ; Insecta ; Seasons ; Temperature
References:
Abarca, M., & Spahn, R. (2021). Direct and indirect effects of altered temperature regimes and phenological mismatches on insect populations. Current Opinion in Insect Science, 47, 67-74. https://doi.org/10.1016/j.cois.2021.04.008.
Abram, P. K., Brodeur, J., Urbaneja, A., & Tena, A. (2019). Nonreproductive effects of insect parasitoids on their hosts. Annual Review of Entomology, 64(1), 259-276. https://doi.org/10.1146/annurev-ento-011118-111753.
Agosta, S. J., Joshi, K. A., & Kester, K. M. (2018). Upper thermal limits differ among and within component species in a tritrophic host-parasitoid-hyperparasitoid system. PLoS One, 13(6), e0198803. https://doi.org/10.1371/journal.pone.0198803.
Alford, R. A., Bradfield, K. S., & Richards, S. J. (2007). Global warming and amphibian losses. Nature, 447(7144), E3-E4.
Augustin, J., Boivin, G., Bourgeois, G., & Brodeur, J. (2021). The effect of temperature on host patch exploitation by an egg parasitoid. PLoS One, 16(7), e0254750. https://doi.org/10.1371/journal.pone.0254750.
Barker, J. S. F., & Podger, R. N. (1970). Interspecific competition between Drosophila melanogaster and Drosophila simulans: Effects of larval density on viability, developmental period and adult body weight. Ecology, 51(2), 170-189. https://doi.org/10.2307/1933654.
Benrey, B., & Denno, R. F. (1997). The slow-growth-high-mortality hypothesis: A test using the cabbage butterfly. Ecology, 78(4), 987-999.
Bolker, B., & R Development Core Team. (2020). bbmle: Tools for general maximum likelihood estimation. R Package Version, 1.0.23.1. https://CRAN.R-project.org/package=bbmle.
Both, C., van Asch, M., Bijlsma, R. G., van den Burg, A. B., & Visser, M. E. (2009). Climate change and unequal phenological changes across four trophic levels: Constraints or adaptations? Journal of Animal Ecology, 78(1), 73-83. https://doi.org/10.1111/j.1365-2656.2008.01458.x.
Briggs, C. J., & Latto, J. (1996). The window of vulnerability and its effect on relative parasitoid abundance. Ecological Entomology, 21(2), 128-140. https://doi.org/10.1111/j.1365-2311.1996.tb01179.x.
Bukovinszky, T., Gols, R., Hemerik, L., Van Lenteren, J. C., & Vet, L. E. (2007). Time allocation of a parasitoid foraging in heterogeneous vegetation: Implications for host-parasitoid interactions. Journal of Animal Ecology, 76(5), 845-853. https://doi.org/10.1111/j.1365-2656.2007.01259.x.
Catalán, T. P., Wozniak, A., Niemeyer, H. M., Kalergis, A. M., & Bozinovic, F. (2012). Interplay between thermal and immune ecology: Effect of environmental temperature on insect immune response and energetic costs after an immune challenge. Journal of Insect Physiology, 58(3), 310-317. https://doi.org/10.1016/j.jinsphys.2011.10.001.
Cavigliasso, F., Gatti, J.-L., Colinet, D., & Poirié, M. (2021). Impact of temperature on the immune interaction between a parasitoid wasp and Drosophila host species. Insects, 12(7), 647. https://doi.org/10.3390/insects12070647.
Chamberlain, S. A., Bronstein, J. L., & Rudgers, J. A. (2014). How context dependent are species interactions? Ecology Letters, 17(7), 881-890. https://doi.org/10.1111/ele.12279.
Chi, H., & Su, H.-Y. (2006). Age-stage, two-sex life tables of Aphidius gifuensis (Ashmead)(Hymenoptera: Braconidae) and its host Myzus persicae (Sulzer)(Homoptera: Aphididae) with mathematical proof of the relationship between female fecundity and the net reproductive rate. Environmental Entomology, 35(1), 10-21.
Craven, D., Eisenhauer, N., Pearse, W. D., Hautier, Y., Isbell, F., Roscher, C., Bahn, M., Beierkuhnlein, C., Bönisch, G., Buchmann, N., Byun, C., Catford, J. A., Cerabolini, B. E. L., Cornelissen, J. H. C., Craine, J. M., De Luca, E., Ebeling, A., Griffin, J. N., Hector, A., … Manning, P. (2018). Multiple facets of biodiversity drive the diversity-stability relationship. Nature Ecology & Evolution, 2(10), 1579-1587. https://doi.org/10.1038/s41559-018-0647-7.
Cuny, M. A. C., Traine, J., Bustos-Segura, C., & Benrey, B. (2019). Host density and parasitoid presence interact and shape the outcome of a tritrophic interaction on seeds of wild lima bean. Scientific Reports, 9(1). https://doi.org/10.1038/s41598-019-55143-5.
Cushing, D. H. (1990). Plankton production and year-class strength in fish populations: An update of the match/mismatch hypothesis. In J. H. S. Blaxter & A. J. Southward (Eds.), Advances in marine biology (Vol. 26, pp. 249-293). Elsevier.
Davis, A. J., Jenkinson, L. S., Lawton, J. H., Shorrocks, B., & Wood, S. (1998). Making mistakes when predicting shifts in species range in response to global warming. Nature, 391(6669), 783-786.
Derocles, S. A., Lunt, D. H., Berthe, S. C., Nichols, P. C., Moss, E. D., & Evans, D. M. (2018). Climate warming alters the structure of farmland tritrophic ecological networks and reduces crop yield. Molecular Ecology, 27(23), 4931-4946. https://doi.org/10.1111/mec.14903.
Dyer, L. A., Richards, L. A., Short, S. A., & Dodson, C. D. (2013). Effects of CO2 and temperature on tritrophic interactions. PLoS One, 8(4), e62528. https://doi.org/10.1371/journal.pone.0062528.
Faillace, C. A., Sentis, A., & Montoya, J. M. (2021). Eco-evolutionary consequences of habitat warming and fragmentation in communities. Biological Reviews. https://doi.org/10.1111/brv.12732.
Farzan, S., & Yang, L. H. (2018). Experimental shifts in phenology affect fitness, foraging, and parasitism in a native solitary bee. Ecology, 99(10), 2187-2195. https://doi.org/10.1002/ecy.2475.
Fellowes, M. D. E., Kraaijeveld, A. R., & Godfray, H. C. J. (1999). Cross-resistance following artificial selection for increased defense against parasitoids in Drosophila melanogaster. Evolution, 53(3), 966-972.
Fleury, F., Gibert, P., Ris, N., & Allemand, R. (2009). Ecology and life history evolution of frugivorous Drosophila parasitoids. Advances in Parasitology, 70, 3-44.
Forister, M. L., Pelton, E. M., & Black, S. H. (2019). Declines in insect abundance and diversity: We know enough to act now. Conservation Science and Practice, 1(8), e80. https://doi.org/10.1111/csp2.80.
Forrest, J. R. (2016). Complex responses of insect phenology to climate change. Current Opinion in Insect Science, 17, 49-54. https://doi.org/10.1016/j.cois.2016.07.002.
Forrest, J., & Miller-Rushing, A. J. (2010). Toward a synthetic understanding of the role of phenology in ecology and evolution. The Royal Society.
Godfray, H. C. J., Hassell, M. P., & Holt, R. D. (1994). The population dynamic consequences of phenological asynchrony between parasitoids and their hosts. The Journal of Animal Ecology, 63(1), 1-10. https://doi.org/10.2307/5577.
Hance, T., van Baaren, J., Vernon, P., & Boivin, G. (2007). Impact of extreme temperatures on parasitoids in a climate change perspective. Annual Review of Entomology, 52(1), 107-126. https://doi.org/10.1146/annurev.ento.52.110405.091333.
Hartig, F. (2019). DHARMa: Residual diagnostics for hierarchical (multi-level/mixed) regression models. R package version 0.2.4. https://CRAN.R-project.org/package=DHARMa.
Hassell, M. P., Comins, H. N., & May, R. M. (1991). Spatial structure and chaos in insect population dynamics. Nature, 353(6341), 255-258.
Holt, R. D., & Hassell, M. P. (1993). Environmental heterogeneity and the stability of host-parasitoid interactions. The Journal of Animal Ecology, 62(1), 89-100. https://doi.org/10.2307/5485.
Høye, T. T., Post, E., Meltofte, H., Schmidt, N. M., & Forchhammer, M. C. (2007). Rapid advancement of spring in the High Arctic. Current Biology, 17(12), R449-R451. https://doi.org/10.1016/j.cub.2007.04.047.
Intergovernmental Panel On Climate Change (IPCC). (2018). Summary for policymakers of IPCC special report on global warming of 1.5°C approved by governments. https://www.ipcc.ch/sr15/chapter/summary-for-policy-makers/.
Ives, A. R., & Settle, W. H. (1996). The failure of a parasitoid to persist with a superabundant host: The importance of the numerical response. Oikos, 269-278. https://doi.org/10.2307/3546250.
Jeffs, C. T., & Lewis, O. T. (2013). Effects of climate warming on host-parasitoid interactions. Ecological Entomology, 38(3), 209-218. https://doi.org/10.1111/een.12026.
Jeffs, C. T., Terry, J. C. D., Higgie, M., Jandová, A., Konvičková, H., Brown, J. J., Lue, C. H., Schiffer, M., O’Brien, E. K., Bridle, J., Hrček, J., & Lewis, O. T. (2021). Molecular analyses reveal consistent food web structure with elevation in rainforest Drosophila - Parasitoid communities. Ecography, 44(3), 403-413. https://doi.org/10.1111/ecog.05390.
Johansson, J., Kristensen, N. P., Nilsson, J.-Å., & Jonzén, N. (2015). The eco-evolutionary consequences of interspecific phenological asynchrony-A theoretical perspective. Oikos, 124(1), 102-112. https://doi.org/10.1111/oik.01909.
Jones, T. S., Godfray, H. C. J., & van Veen, F. F. (2009). Resource competition and shared natural enemies in experimental insect communities. Oecologia, 159(3), 627-635. https://doi.org/10.1007/s00442-008-1247-z.
Karban, R. (1998). Caterpillar basking behavior and nonlethal parasitism by tachinid flies. Journal of Insect Behavior, 11(5), 713-723. https://doi.org/10.1023/A:1022350926720.
Kerby, J. T., Wilmers, C. C., & Post, E. (2012). Climate change, phenology, and the nature of consumer-resource interactions: Advancing the match/mismatch hypothesis. In T. Ohgushi, O. Schmitz, & R. D. Holt (Eds.), Trait-mediated indirect interactions: Ecological and evolutionary perspectives (pp. 508-525). Cambridge Univesity Press.
Kharouba, H. M., Ehrlén, J., Gelman, A., Bolmgren, K., Allen, J. M., Travers, S. E., & Wolkovich, E. M. (2018). Global shifts in the phenological synchrony of species interactions over recent decades. Proceedings of the National Academy of Sciences of the United States of America, 115(20), 5211-5216. https://doi.org/10.1073/pnas.1714511115.
Kharouba, H. M., & Wolkovich, E. M. (2020). Disconnects between ecological theory and data in phenological mismatch research. Nature Climate Change, 1-10. https://doi.org/10.1038/s41558-020-0752-x.
Kingsolver, J. G., & Buckley, L. B. (2018). How do phenology, plasticity, and evolution determine the fitness consequences of climate change for montane butterflies? Evolutionary Applications, 11(8), 1231-1244. https://doi.org/10.1111/eva.12618.
Kingsolver, J. G., Woods, H. A., Buckley, L. B., Potter, K. A., MacLean, H. J., & Higgins, J. K. (2011). Complex life cycles and the responses of insects to climate change. Integrative and Comparative Biology, 51(5), 719-732. https://doi.org/10.1093/icb/icr015.
Klapwijk, M. J., Groebler, B. C., Ward, K., Wheeler, D., & Lewis, O. T. (2010). Influence of experimental warming and shading on host-parasitoid synchrony. Global Change Biology, 16(1), 102-112.
Körner, C., & Basler, D. (2010). Phenology under global warming. Science, 327(5972), 1461-1462.
Lenth, R. (2019). emmeans: Estimated marginal means, aka least-squares means. R package version 1.4.3.01. https://CRAN.R-project.org/package=emmeans.
Lüdecke, D. (2021). sjPlot: Data visualization for Statistics in Social Science. R package version, 2.8. https://CRAN.R-project.org/package=sjPlot.
Lue, C.-H., Buffington, M. L., Scheffer, S., Lewis, M., Elliott, T. A., Lindsey, A. R., Driskell, A., Jandova, A., Kimura, M. T., & Carton, Y. (2021). DROP: Molecular voucher database for identification of Drosophila parasitoids. Molecular Ecology Resources, 21(7), 2437-2454.
McNamara, J. M., Barta, Z., Klaassen, M., & Bauer, S. (2011). Cues and the optimal timing of activities under environmental changes. Ecology Letters, 14(12), 1183-1190. https://doi.org/10.1111/j.1461-0248.2011.01686.x.
Memmott, J., Craze, P. G., Waser, N. M., & Price, M. V. (2007). Global warming and the disruption of plant-pollinator interactions. Ecology Letters, 10(8), 710-717. https://doi.org/10.1111/j.1461-0248.2007.01061.x.
Miller, T. E., & Rudolf, V. H. (2011). Thinking inside the box: Community-level consequences of stage-structured populations. Trends in Ecology & Evolution, 26(9), 457-466. https://doi.org/10.1016/j.tree.2011.05.005.
Miller-Rushing, A. J., Høye, T. T., Inouye, D. W., & Post, E. (2010). The effects of phenological mismatches on demography. Philosophical Transactions of the Royal Society B: Biological Sciences, 365(1555), 3177-3186.
Moiroux, J., Boivin, G., & Brodeur, J. (2015). Temperature influences host instar selection in an aphid parasitoid: Support for the relative fitness rule. Biological Journal of the Linnean Society, 115(4), 792-801. https://doi.org/10.1111/bij.12545.
Moore, M. E., Hill, C. A., & Kingsolver, J. G. (2021). Differing thermal sensitivities in a host-parasitoid interaction: High, fluctuating developmental temperatures produce dead wasps and giant caterpillars. Functional Ecology, 35(3), 675-685. https://doi.org/10.1111/1365-2435.13748.
Nakazawa, T., & Doi, H. (2012). A perspective on match/mismatch of phenology in community contexts. Oikos, 121(4), 489-495. https://doi.org/10.1111/j.1600-0706.2011.20171.x.
NCEI. (2016). NOAA National Centers for Environmental information.
Nouhaud, P., Mallard, F., Poupardin, R., Barghi, N., & Schlötterer, C. (2018). High-throughput fecundity measurements in Drosophila. Scientific Reports, 8(1), 1-6. https://doi.org/10.1038/s41598-018-22777-w.
Olliff-Yang, R. L., Gardali, T., & Ackerly, D. D. (2020). Mismatch managed? Phenological phase extension as a strategy to manage phenological asynchrony in plant-animal mutualisms. Restoration Ecology, 28(3), 498-505. https://doi.org/10.1111/rec.13130.
R Core Team. (2021). R: A language and environment for statistical computing, version 4.0.4 [Computer software]. R Foundation for Statistical Computing. http://www.R-project.org.
Rafferty, N. E., CaraDonna, P. J., Burkle, L. A., Iler, A. M., & Bronstein, J. L. (2013). Phenological overlap of interacting species in a changing climate: An assessment of available approaches. Ecology and Evolution, 3(9), 3183-3193. https://doi.org/10.1002/ece3.668.
Rasmussen, N. L., Van Allen, B. G., & Rudolf, V. H. (2014). Linking phenological shifts to species interactions through size-mediated priority effects. Journal of Animal Ecology, 83(5), 1206-1215. https://doi.org/10.1111/1365-2656.12203.
Ren, P., Néron, V., Rossi, S., Liang, E., Bouchard, M., & Deslauriers, A. (2020). Warming counteracts defoliation-induced mismatch by increasing herbivore-plant phenological synchrony. Global Change Biology, 26(4), 2072-2080. https://doi.org/10.1111/gcb.14991.
Renner, S. S., & Zohner, C. M. (2018). Climate change and phenological mismatch in trophic interactions among plants, insects, and vertebrates. Annual Review of Ecology, Evolution, and Systematics, 49, 165-182. https://doi.org/10.1146/annurev-ecolsys-110617-062535.
Revilla, T. A., Encinas-Viso, F., & Loreau, M. (2014). (A bit) Earlier or later is always better: Phenological shifts in consumer-resource interactions. Theoretical Ecology, 7(2), 149-162. https://doi.org/10.1007/s12080-013-0207-3.
Rossi Stacconi, M. V., Buffington, M., Daane, K. M., Dalton, D. T., Grassi, A., Kaçar, G., Miller, B., Miller, J. C., Baser, N., Ioriatti, C., Walton, V. M., Wiman, N. G., Wang, X., & Anfora, G. (2015). Host stage preference, efficacy and fecundity of parasitoids attacking Drosophila suzukii in newly invaded areas. Biological Control, 84, 28-35. https://doi.org/10.1016/j.biocontrol.2015.02.003.
Rudolf, V. H. (2018). Nonlinear effects of phenological shifts link interannual variation to species interactions. Journal of Animal Ecology, 87(5), 1395-1406. https://doi.org/10.1111/1365-2656.12850.
Rudolf, V. H., & Singh, M. (2013). Disentangling climate change effects on species interactions: Effects of temperature, phenological shifts, and body size. Oecologia, 173(3), 1043-1052. https://doi.org/10.1007/s00442-013-2675-y.
Sait, S. M., Begon, M., Thompson, D. J., Harvey, J. A., & Hails, R. S. (1997). Factors affecting host selection in an insect host-parasitoid interaction. Ecological Entomology, 22(2), 225-230. https://doi.org/10.1046/j.1365-2311.1997.t01-1-00051.x.
Salcido, D. M., Forister, M. L., Lopez, H. G., & Dyer, L. A. (2020). Loss of dominant caterpillar genera in a protected tropical forest. Scientific Reports, 10. https://doi.org/10.1038/s41598-019-57226-9.
Samplonius, J. M., Atkinson, A., Hassall, C., Keogan, K., Thackeray, S. J., Assmann, J. J., Burgess, M. D., Johansson, J., Macphie, K. H., Pearce-Higgins, J. W., Simmonds, E. G., Varpe, Ø., Weir, J. C., Childs, D. Z., Cole, E. F., Daunt, F., Hart, T., Lewis, O. T., Pettorelli, N., … Phillimore, A. B. (2021). Strengthening the evidence base for temperature-mediated phenological asynchrony and its impacts. Nature Ecology & Evolution, 5(2), 155-164. https://doi.org/10.1038/s41559-020-01357-0.
Samplonius, J. M., Kappers, E. F., Brands, S., & Both, C. (2016). Phenological mismatch and ontogenetic diet shifts interactively affect offspring condition in a passerine. Journal of Animal Ecology, 85(5), 1255-1264. https://doi.org/10.1111/1365-2656.12554.
Sasaki, T., Lu, X., Hirota, M., & Bai, Y. (2019). Species asynchrony and response diversity determine multifunctional stability of natural grasslands. Journal of Ecology, 107(4), 1862-1875. https://doi.org/10.1111/1365-2745.13151.
Shurin, J. B., Clasen, J. L., Greig, H. S., Kratina, P., & Thompson, P. L. (2012). Warming shifts top-down and bottom-up control of pond food web structure and function. Philosophical Transactions of the Royal Society B: Biological Sciences, 367(1605), 3008-3017. https://doi.org/10.1098/rstb.2012.0243.
Simmonds, E. G., Cole, E. F., Sheldon, B. C., & Coulson, T. (2020). Phenological asynchrony: A ticking time-bomb for seemingly stable populations? Ecology Letters, 23(12), 1766-1775. https://doi.org/10.1111/ele.13603.
Song, C., Von Ahn, S., Rohr, R. P., & Saavedra, S. (2020). Towards a probabilistic understanding about the context-dependency of species interactions. Trends in Ecology & Evolution, 35(5), 384-396. https://doi.org/10.1016/j.tree.2019.12.011.
Spataro, T., & Bernstein, C. (2004). Combined effects of intraspecific competition and parasitoid attacks on the dynamics of a host population: A stage-structured model. Oikos, 105(1), 148-158. https://doi.org/10.1111/j.0030-1299.2004.13104.x.
Stenseth, N. C., & Mysterud, A. (2002). Climate, changing phenology, and other life history traits: Nonlinearity and match-mismatch to the environment. Proceedings of the National Academy of Sciences of the United States of America, 99(21), 13379-13381. https://doi.org/10.1073/pnas.212519399.
Stevens, M. H. H., & Carson, W. P. (2001). Phenological complementarity, species diversity, and ecosystem function. Oikos, 92(2), 291-296. https://doi.org/10.1034/j.1600-0706.2001.920211.x.
Takimoto, G., & Sato, T. (2020). Timing and duration of phenological resources: Toward a mechanistic understanding of their impacts on community structure and ecosystem processes in stream food chains. Ecological Research, 35(3), 463-473. https://doi.org/10.1111/1440-1703.12098.
Thierry, M., Hrček, J., & Lewis, O. T. (2019). Mechanisms structuring host-parasitoid networks in a global warming context: A review. Ecological Entomology, 44(5), 581-592. https://doi.org/10.1111/een.12750.
Thierry, M., Pardikes, N. A., Rosenbaum, B., Ximénez-Embún, M. G., & Hrček, J. (2022). The presence of multiple parasitoids decreases host survival under warming, but parasitoid performance also decreases. Proceedings of the Royal Society B: Biological Sciences, 289(1971), 20220121. https://doi.org/10.1098/rspb.2022.0121.
Thomas, M. B., & Blanford, S. (2003). Thermal biology in insect-parasite interactions. Trends in Ecology & Evolution, 18(7), 344-350. https://doi.org/10.1016/S0169-5347(03)00069-7.
Timberlake, T. P., Vaughan, I. P., & Memmott, J. (2019). Phenology of farmland floral resources reveals seasonal gaps in nectar availability for bumblebees. Journal of Applied Ecology, 56(7), 1585-1596. https://doi.org/10.1111/1365-2664.13403.
Tuda, M., & Shimada, M. (1995). Developmental schedules and persistence of experimental host-parasitoid systems at two different temperatures. Oecologia, 103(3), 283-291. https://doi.org/10.1007/BF00328616.
Valadao, H., Proenca, C. E., Kuhlmann, M. P., Harris, S. A., & Tidon, R. (2019). Fruit-breeding drosophilids (Diptera) in the Neotropics: Playing the field and specialising in generalism? Ecological Entomology, 44(6), 721-737. https://doi.org/10.1111/een.12769.
Velthuis, M., de Senerpont Domis, L. N., Frenken, T., Stephan, S., Kazanjian, G., Aben, R., Hilt, S., Kosten, S., Van Donk, E., & Van de Waal, D. B. (2017). Warming advances top-down control and reduces producer biomass in a freshwater plankton community. Ecosphere, 8(1), e01651. https://doi.org/10.1002/ecs2.1651.
Visser, M. E., & Both, C. (2005). Shifts in phenology due to global climate change: The need for a yardstick. Proceedings of the Royal Society B: Biological Sciences, 272(1581), 2561-2569.
White, S. M., Sait, S. M., & Rohani, P. (2007). Population dynamic consequences of parasitised-larval competition in stage-structured host-parasitoid systems. Oikos, 116(7), 1171-1185. https://doi.org/10.1111/j.0030-1299.2007.15750.x.
Wickham, H. (2011). ggplot2. Wiley Interdisciplinary Reviews: Computational Statistics, 3(2), 180-185. https://doi.org/10.1002/wics.147.
Wojda, I. (2017). Temperature stress and insect immunity. Journal of Thermal Biology, 68, 96-103. https://doi.org/10.1016/j.jtherbio.2016.12.002.
Wolf, A. A., Zavaleta, E. S., & Selmants, P. C. (2017). Flowering phenology shifts in response to biodiversity loss. Proceedings of the National Academy of Sciences of the United States of America, 114(13), 3463-3468. https://doi.org/10.1073/pnas.1608357114.
Wolkovich, E. M., Cook, B. I., Allen, J. M., Crimmins, T. M., Betancourt, J. L., Travers, S. E., Pau, S., Regetz, J., Davies, T. J., Kraft, N. J. B., Ault, T. R., Bolmgren, K., Mazer, S. J., McCabe, G. J., McGill, B. J., Parmesan, C., Salamin, N., Schwartz, M. D., & Cleland, E. E. (2012). Warming experiments underpredict plant phenological responses to climate change. Nature, 485(7399), 494-497. https://doi.org/10.1038/nature11014.
Yachi, S., & Loreau, M. (1999). Biodiversity and ecosystem productivity in a fluctuating environment: The insurance hypothesis. Proceedings of the National Academy of Sciences of the United States of America, 96(4), 1463-1468. https://doi.org/10.1073/pnas.96.4.1463.
Yang, L. H. (2020). Toward a more temporally explicit framework for community ecology. Ecological Research, 35(3), 445-462. https://doi.org/10.1111/1440-1703.12099.
Yang, L. H., & Rudolf, V. H. W. (2010). Phenology, ontogeny and the effects of climate change on the timing of species interactions. Ecology Letters, 13(1), 1-10. https://doi.org/10.1111/j.1461-0248.2009.01402.x.
Zamani, A. A., Talebi, A., Fathipour, Y., & Baniameri, V. (2007). Effect of temperature on life history of Aphidius colemani and Aphidius matricariae (Hymenoptera: Braconidae), two parasitoids of Aphis gossypii and Myzus persicae (Homoptera: Aphididae). Environmental Entomology, 36(2), 263-271.
Zettlemoyer, M. A., Schultheis, E. H., & Lau, J. A. (2019). Phenology in a warming world: Differences between native and non-native plant species. Ecology Letters, 22(8), 1253-1263. https://doi.org/10.1111/ele.13290.
Zhang, L., Thygesen, U. H., Knudsen, K., & Andersen, K. H. (2013). Trait diversity promotes stability of community dynamics. Theoretical Ecology, 6(1), 57-69. https://doi.org/10.1007/s12080-012-0160-6.
Zhang, Z., Yan, C., Krebs, C. J., & Stenseth, N. C. (2015). Ecological non-monotonicity and its effects on complexity and stability of populations, communities and ecosystems. Ecological Modelling, 312, 374-384. https://doi.org/10.1016/j.ecolmodel.2015.06.004.
Contributed Indexing:
Keywords: climate change; functional redundancy; host-parasitoid interactions; phenological shifts; population dynamics; resource competition
Entry Date(s):
Date Created: 20220415 Date Completed: 20220608 Latest Revision: 20220716
Update Code:
20240105
DOI:
10.1111/gcb.16195
PMID:
35426203
Czasopismo naukowe
Climate change is altering the relative timing of species interactions by shifting when species first appear in communities and modifying the duration organisms spend in each developmental stage. However, community contexts, such as intraspecific competition and alternative resource species, can prolong shortened windows of availability and may mitigate the effects of phenological shifts on species interactions. Using a combination of laboratory experiments and dynamic simulations, we quantified how the effects of phenological shifts in Drosophila-parasitoid interactions differed with concurrent changes in temperature, intraspecific competition, and the presence of alternative host species. Our study confirmed that warming shortens the window of host susceptibility. However, the presence of alternative host species sustained interaction persistence across a broader range of phenological shifts than pairwise interactions by increasing the degree of temporal overlap with suitable development stages between hosts and parasitoids. Irrespective of phenological shifts, parasitism rates declined under warming due to reduced parasitoid performance, which limited the ability of community context to manage temporally mismatched interactions. These results demonstrate that the ongoing decline in insect diversity may exacerbate the effects of phenological shifts in ecological communities under future global warming temperatures.
(© 2022 John Wiley & Sons Ltd.)

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies