Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Draft Genomes of Six Philippine Erwinia mallotivora Isolates: Comparative Genomics and Genome-Wide Analysis of Candidate Secreted Proteins.

Tytuł:
Draft Genomes of Six Philippine Erwinia mallotivora Isolates: Comparative Genomics and Genome-Wide Analysis of Candidate Secreted Proteins.
Autorzy:
Waje AF; Institute of Plant Breeding, College of Agriculture and Food Science, University of the Philippines Los Baños, College, Laguna, 4031, Philippines.
Lantican DV; Institute of Plant Breeding, College of Agriculture and Food Science, University of the Philippines Los Baños, College, Laguna, 4031, Philippines.
Pathania N; Department of Agriculture and Fisheries, Mareeba, QLD, Australia.
Dela Cueva FM; Institute of Plant Breeding, College of Agriculture and Food Science, University of the Philippines Los Baños, College, Laguna, 4031, Philippines. .
Źródło:
Current microbiology [Curr Microbiol] 2022 Apr 18; Vol. 79 (6), pp. 164. Date of Electronic Publication: 2022 Apr 18.
Typ publikacji:
Journal Article
Język:
English
Imprint Name(s):
Original Publication: New York, Springer International.
MeSH Terms:
Erwinia*/genetics
Genome, Bacterial/genetics ; Genomics ; Philippines
References:
FAO (2017) FAO Publications Catalogue 2017. Food and Agriculture Organization of the United Nations, Rome, Italy.
Amin NM, Bunawan H, Redzuan RA, Jaganath IBS (2011) Erwinia mallotivora sp., a new pathogen of papaya (Carica papaya) in peninsular Malaysia. Int J Mol Sci 12:39–45. https://doi.org/10.3390/ijms12010039. (PMID: 10.3390/ijms12010039)
Dela Cueva FM, Waje AF, Magdalita PM et al (2017) Evaluation of inoculation techniques to screen for bacterial crown rot resistance in different breeding lines of Carica papaya. J Plant Pathol 99:355–360. https://doi.org/10.4454/jpp.v99i2.3887. (PMID: 10.4454/jpp.v99i2.3887)
Suharjo R, Oktaviana HA, Aeny TN et al (2021) Erwinia mallotivora is the causal agent of papaya bacterial crown rot disease in Lampung Timur, Indonesia. Plant Protect Sci. https://doi.org/10.17221/123/2020-PPS. (PMID: 10.17221/123/2020-PPS)
Ollitrault P, Bruyère S, Ocampo J, et al (2007) Papaya breeding for tolerance to bacterial decline (Erwinia sp.) in the Caribbean region. Acta Horticulturae 740:79–92. https://doi.org/10.17660/ActaHortic.2007.740.8.
Sekeli R, Hamid MH, Razak RA et al (2018) Malaysian Carica papaya L. var. Eksotika: current research strategies fronting challenges. Front Plant Sci. https://doi.org/10.3389/fpls.2018.01380. (PMID: 10.3389/fpls.2018.01380302796956154280)
Maktar NH, Kamis S, Mohd Yusof FZ, Hussain NH (2008) Erwinia papayae causing papaya dieback in Malaysia. Plant Pathol 57:774–774. https://doi.org/10.1111/j.1365-3059.2008.01877.x. (PMID: 10.1111/j.1365-3059.2008.01877.x)
Goto M (1976) Erwinia mallotivora sp. nov., the causal organism of bacterial leaf spot of Mallotus japonicus Muell. Arg. Int J Syst Bacteriol 26:467–473. https://doi.org/10.1099/00207713-26-4-467. (PMID: 10.1099/00207713-26-4-467)
Sindelarova M (2001) Schaad, N.W., Jones, J.B., Chun, W. (ed.): laboratory guide for identification of plant pathogenic bacteria. Biol Plant 44:546–546. https://doi.org/10.1023/a:1013748332579. (PMID: 10.1023/a:1013748332579)
Hauben L, Moore ERB, Vauterin L et al (1998) Phylogenetic position of phytopathogens within the Enterobacteriaceae. Syst Appl Microbiol 21:384–397. https://doi.org/10.1016/S0723-2020(98)80048-9. (PMID: 10.1016/S0723-2020(98)80048-99779605)
Brown EW, Davis RM, Gouk C, Van der Zwet T (2000) Phylogenetic relationships of necrogenic Erwinia and Brenneria species as revealed by glyceraldehyde-3-phosphate dehydrogenase gene sequences. Int J Syst Evol Microbiol 50:2057–2068. https://doi.org/10.1099/00207713-50-6-2057. (PMID: 10.1099/00207713-50-6-205711155980)
Geider K, Auling G, Jakovljevic V, Völksch B (2009) A polyphasic approach assigns the pathogenic Erwinia strains from diseased pear trees in Japan to Erwinia pyrifoliae. Lett Appl Microbiol 48:324–330. https://doi.org/10.1111/j.1472-765X.2008.02535.x. (PMID: 10.1111/j.1472-765X.2008.02535.x19187512)
Redzuan RA, Abu Bakar N, Rozano L et al (2014) Draft genome sequence of Erwinia mallotivora BT-MARDI, causative agent of papaya dieback disease. Genome Announc. https://doi.org/10.1128/genomeA.00375-14. (PMID: 10.1128/genomeA.00375-14248122204014688)
Bunawan H, Baharum SN (2015) Papaya dieback in Malaysia: a steptowards a new insight of disease resistance. Iran J Biotechnol 13(4):1–2. (PMID: 10.15171/ijb.1139)
Chen S, Zhou Y, Chen Y, Gu J (2018) Fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 34(17):i884–i890. (PMID: 10.1093/bioinformatics/bty560)
Nurk S, Bankevich A, Antipov D et al (2013) Assembling single-cell genomes and mini-metagenomes from chimeric MDA products. J Comput Biol 20:714–737. https://doi.org/10.1089/cmb.2013.0084. (PMID: 10.1089/cmb.2013.0084240932273791033)
Gurevich A, Saveliev V, Vyahhi N, Tesler G (2013) QUAST: quality assessment tool for genome assemblies. Bioinformatics 29:1072–1075. https://doi.org/10.1093/bioinformatics/btt086. (PMID: 10.1093/bioinformatics/btt086234223393624806)
Langmead B, Salzberg SL (2012) Fast gapped-read alignment with Bowtie 2. Nat Methods. https://doi.org/10.1038/nmeth.1923. (PMID: 10.1038/nmeth.1923223882863322381)
Simão FA, Waterhouse RM, Ioannidis P et al (2015) BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics 31:3210–3212. https://doi.org/10.1093/bioinformatics/btv351. (PMID: 10.1093/bioinformatics/btv35126059717)
Seemann T (2014) Prokka: rapid prokaryotic genome annotation. Bioinformatics 30:2068–2069. https://doi.org/10.1093/bioinformatics/btu153. (PMID: 10.1093/bioinformatics/btu15324642063)
Lagesen K, Hallin P, Rødland EA et al (2007) RNAmmer: consistent and rapid annotation of ribosomal RNA genes. Nucleic Acids Res 35:3100–3108. https://doi.org/10.1093/nar/gkm160. (PMID: 10.1093/nar/gkm160174523651888812)
Araujo FA, Barh D, Silva A et al (2018) GO FEAT: a rapid web-based functional annotation tool for genomic and transcriptomic data. Sci Rep. https://doi.org/10.1038/s41598-018-20211-9. (PMID: 10.1038/s41598-018-20211-9304101196224548)
Rodriguez-R L, Konstantinidis K (2016) The enveomics collection: a toolbox for specialized analyses of microbial genomes and metagenomes. PeerJ Preprints. https://doi.org/10.7287/peerj.preprints.1900. (PMID: 10.7287/peerj.preprints.1900)
Meier-Kolthoff JP, Auch AF, Klenk HP, Göker M (2013) Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinform. https://doi.org/10.1186/1471-2105-14-60. (PMID: 10.1186/1471-2105-14-60)
Emms DM, Kelly S (2019) OrthoFinder: Phylogenetic orthology inference for comparative genomics. Genome Biol. https://doi.org/10.1186/s13059-019-1832-y. (PMID: 10.1186/s13059-019-1832-y317271286857279)
Buchfink B, Reuter K, Drost HG (2021) Sensitive protein alignments at tree-of-life scale using DIAMOND. Nat Methods. https://doi.org/10.1038/s41592-021-01101-x. (PMID: 10.1038/s41592-021-01101-x338282738026399)
Emms DM, Kelly S (2018) STAG: species tree inference from all genes. bioRxiv. https://doi.org/10.1101/267914. (PMID: 10.1101/267914)
Emms DM, Kelly S (2017) STRIDE: species tree root inference from gene duplication events. Mol Biol Evol 34:3267–3278. https://doi.org/10.1093/molbev/msx259. (PMID: 10.1093/molbev/msx259290293425850722)
Wu YC, Rasmussen MD, Bansal MS, Kellis M (2014) Most parsimonious reconciliation in the presence of gene duplication, loss, and deep coalescence using labeled coalescent trees. Genome Res 24:475–486. https://doi.org/10.1101/gr.161968.113. (PMID: 10.1101/gr.161968.113243100003941112)
Khan A, Mathelier A (2017) Intervene: a tool for intersection and visualization of multiple gene or genomic region sets. BMC Bioinform. https://doi.org/10.1186/s12859-017-1708-7. (PMID: 10.1186/s12859-017-1708-7)
Eichinger V, Nussbaumer T, Platzer A et al (2016) EffectiveDB—updates and novel features for a better annotation of bacterial secreted proteins and type III, IV VI secretion systems. Nucleic Acids Res. https://doi.org/10.1093/nar/gkv1269. (PMID: 10.1093/nar/gkv126926590402)
Arnold R, Brandmaier S, Kleine F et al (2009) Sequence-based prediction of type III secreted proteins. PLoS Pathog. https://doi.org/10.1371/journal.ppat.1000376. (PMID: 10.1371/journal.ppat.1000376193906962706736)
Small I, Peeters N, Legeai F, Lurin C (2004) Predotar: a tool for rapidly screening proteomes for N-terminal targeting sequences. Proteomics. https://doi.org/10.1002/pmic.200300776. (PMID: 10.1002/pmic.20030077615174128)
Törönen P, Medlar A, Holm L (2018) PANNZER2: a rapid functional annotation web server. Nucleic Acids Res. https://doi.org/10.1093/nar/gky350. (PMID: 10.1093/nar/gky350297627246030964)
Trujillo EE (1982) Two bacterial diseases of papaya trees caused by Erwinia species in the Northern Mariana Islands. Plant Dis 66:116. https://doi.org/10.1094/pd-66-116. (PMID: 10.1094/pd-66-116)
Gardan L, Christen R, Achouak W, Prior P (2004) Erwinia papayae sp. nov., a pathogen of papaya (Carica papaya). Int J Syst Evol Microbiol 54:107–113. https://doi.org/10.1099/ijs.0.02718-0. (PMID: 10.1099/ijs.0.02718-014742466)
Richter M, Rosselló-Móra R (2009) Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci USA 106:19126–19131. https://doi.org/10.1073/pnas.0906412106. (PMID: 10.1073/pnas.0906412106198550092776425)
Auch AF, von Jan M, Klenk HP, Göker M (2010) Digital DNA-DNA hybridization for microbial species delineation by means of genome-to-genome sequence comparison. Stand Genomic Sci 2:117–134. https://doi.org/10.4056/sigs.531120. (PMID: 10.4056/sigs.531120213046843035253)
Arahal DR (2014) Whole-genome analyses: average nucleotide identity. Methods in microbiology. Academic Press, Cambridge, pp 103–122.
Douglas GM, Langille MGI (2019) Current and promising approaches to identify horizontal gene transfer events in metagenomes. Genome Biol Evol. https://doi.org/10.1093/gbe/evz184. (PMID: 10.1093/gbe/evz184315044886777429)
Read TD, Massey RC (2014) Characterizing the genetic basis of bacterial phenotypes using genome-wide association studies: a new direction for bacteriology. Genome Med. https://doi.org/10.1186/s13073-014-0109-z. (PMID: 10.1186/s13073-014-0109-z255935934295408)
Zhao Y, Qi M (2011) Comparative genomics of Erwinia amylovora and related Erwinia species-what do we learn? Genes (Basel) 2:627–639. (PMID: 10.3390/genes2030627)
da Silva CF, Uesugi CH, Blum LEB et al (2016) Molecular detection of Erwinia psidii in guava plants under greenhouse and field conditions. Ciência Rural. https://doi.org/10.1590/0103-8478cr20151600. (PMID: 10.1590/0103-8478cr20151600)
Rojas ES, Batzer JC, Beattie GA et al (2015) Bacterial wilt of cucurbits: resurrecting a classic pathosystem. Plant Dis. https://doi.org/10.1094/PDIS-10-14-1068-FE. (PMID: 10.1094/PDIS-10-14-1068-FE30699691)
Bratlie MS, Johansen J, Sherman BT et al (2010) Gene duplications in prokaryotes can be associated with environmental adaptation. BMC Genomics. https://doi.org/10.1186/1471-2164-11-588. (PMID: 10.1186/1471-2164-11-588209614263091735)
Jani AJ, Cotter PA (2010) Type VI secretion: not just for pathogenesis anymore. Cell Host Microbe 8:2–6. (PMID: 10.1016/j.chom.2010.06.012)
Pukatzki S, McAuley SB, Miyata ST (2009) The type VI secretion system: translocation of effectors and effector-domains. Curr Opin Microbiol 12:11–17. (PMID: 10.1016/j.mib.2008.11.010)
Ziebuhr W, Dietrich K, Trautmann M, Wilhelm M (2000) Chromosomal rearrangements affecting biofilm production and antibiotic resistance in a Staphylococcus epidermidis strain causing shunt-associated ventriculitis. Int J Med Microbiol 290:115–120. https://doi.org/10.1016/S1438-4221(00)80115-0. (PMID: 10.1016/S1438-4221(00)80115-011043988)
Shankar N, Baghdayan AS, Gilmore MS (2002) Modulation of virulence within a pathogenicity island in vancomycin-resistant Enterococcus faecalis. Nature 417:746–750. https://doi.org/10.1038/nature00802. (PMID: 10.1038/nature0080212066186)
Hennig S, Ziebuhr W (2010) Characterization of the transposase encoded by IS256, the prototype of a major family of bacterial insertion sequence elements. J Bacteriol 192:4153–4163. https://doi.org/10.1128/JB.00226-10. (PMID: 10.1128/JB.00226-10205430742916423)
Havemann GD, Bobik TA (2003) Protein content of polyhedral organelles involved in coenzyme B 12-dependent degradation of 1,2-propanediol in Salmonella enterica serovar typhimurium LT2. J Bacteriol. https://doi.org/10.1128/JB.185.17.5086-5095.2003. (PMID: 10.1128/JB.185.17.5086-5095.200312923081180998)
Crowley CS, Cascio D, Sawaya MR et al (2010) Structural insight into the mechanisms of transport across the Salmonella enterica Pdu microcompartment shell. J Biol Chem. https://doi.org/10.1074/jbc.M110.160580. (PMID: 10.1074/jbc.M110.160580210980213037675)
Wilson BA, Ho M (2015) Evolutionary aspects of toxin-producing bacteria. In: Alauf J, Ladant D, Popoff MR (eds.) The Comprehensive sourcebook of bacterial protein toxins, 4th edn. Elsevier, Netherlands, pp 3–39.
Juri NM, Samsuddin AF, Abdul Murad AM et al (2020) Discovery of pathogenesis related and effector genes of Erwinia mallotivora in Carica papaya (Eksotika I) seedlings via transcriptomic analysis. Int J Agric Biol. https://doi.org/10.17957/IJAB/15.1382. (PMID: 10.17957/IJAB/15.1382)
Carolin Frank A (2019) Molecular host mimicry and manipulation in bacterial symbionts. FEMS Microbiol Lett 366(4):fnz038. (PMID: 10.1093/femsle/fnz038)
Cazalet C, Rusniok C, Brüggemann H et al (2004) Evidence in the Legionella pneumophila genome for exploitation of host cell functions and high genome plasticity. Nat Genet. https://doi.org/10.1038/ng1447. (PMID: 10.1038/ng144715467720)
Ponting CP, Aravind L, Schultz J et al (1999) Eukaryotic signalling domain homologues in archaea and bacteria. Ancient ancestry and horizontal gene transfer. J Mol Biol. https://doi.org/10.1006/jmbi.1999.2827. (PMID: 10.1006/jmbi.1999.282710369758)
SCR Organism:
Erwinia mallotivora
Entry Date(s):
Date Created: 20220418 Date Completed: 20220420 Latest Revision: 20220517
Update Code:
20240104
DOI:
10.1007/s00284-022-02857-x
PMID:
35435500
Czasopismo naukowe
Erwinia mallotivora is one of the most important bacterial pathogens of papaya and causes bacterial crown rot disease in the Philippines. In this paper, we present the draft genome sequences of six Philippine E. mallotivora isolates to provide insights into the genes involved in host-pathogen interactions and compare their genomes to other Erwinia species. The genomes were sequenced using Illumina Miseq platform. The draft whole-genome assemblies of the E. mallotivora isolates are composed of 36-64 contigs with N50 value ranging from 285 to 332 kbp and cover 96.2-100% of the estimated genome size. Structural genome annotation of these assemblies has predicted 4489-4749 protein-coding genes. Comparative genomic analysis using orthologous gene sets led to the identification of conserved genes within the genus and species-specific gene orthologous groups, which collectively provide a baseline for functional genomic studies to determine genes affecting virulence and host specificity. Secreted proteins of E. mallotivora were also predicted and characterized to unravel putative genes involved in plant-pathogen interactions. This study provides the first draft whole-genome sequences of Philippine isolates of E. mallotivora, thus expanding the genomic knowledge for this species in comparison with other members of the genus Erwinia.
(© 2022. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.)

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies