Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Oral Administration of Isovitexin, a Naturally Occurring Apigenin Derivative Showed Osteoanabolic Effect in Ovariectomized Mice: A Comparative Study with Teriparatide.

Tytuł:
Oral Administration of Isovitexin, a Naturally Occurring Apigenin Derivative Showed Osteoanabolic Effect in Ovariectomized Mice: A Comparative Study with Teriparatide.
Autorzy:
Pal S; Division of Endocrinology and Center for Research in Anabolic Skeletal Target in Health and Illness (ASTHI), CSIR-Central Drug Research Institute, Council of Scientific and Industrial Research, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India.
Sharma S; Division of Endocrinology and Center for Research in Anabolic Skeletal Target in Health and Illness (ASTHI), CSIR-Central Drug Research Institute, Council of Scientific and Industrial Research, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India.; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
Porwal K; Division of Endocrinology and Center for Research in Anabolic Skeletal Target in Health and Illness (ASTHI), CSIR-Central Drug Research Institute, Council of Scientific and Industrial Research, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India.
Riyazuddin M; Pharmaceutics & Pharmacokinetics Division, CSIR-Central Drug Research Institute, Council of Scientific and Industrial Research, Lucknow, 226031, India.
Kulkarni C; Division of Endocrinology and Center for Research in Anabolic Skeletal Target in Health and Illness (ASTHI), CSIR-Central Drug Research Institute, Council of Scientific and Industrial Research, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India.; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
Chattopadhyay S; Division of Biochemistry and Structural Biology, CSIR-Central Drug Research Institute, Council of Scientific and Industrial Research, Lucknow, 226031, India.
Sanyal S; Division of Biochemistry and Structural Biology, CSIR-Central Drug Research Institute, Council of Scientific and Industrial Research, Lucknow, 226031, India.
Gayen JR; Pharmaceutics & Pharmacokinetics Division, CSIR-Central Drug Research Institute, Council of Scientific and Industrial Research, Lucknow, 226031, India.
Chattopadhyay N; Division of Endocrinology and Center for Research in Anabolic Skeletal Target in Health and Illness (ASTHI), CSIR-Central Drug Research Institute, Council of Scientific and Industrial Research, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India. n_.; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India. n_.
Źródło:
Calcified tissue international [Calcif Tissue Int] 2022 Aug; Vol. 111 (2), pp. 196-210. Date of Electronic Publication: 2022 Apr 22.
Typ publikacji:
Journal Article; Research Support, Non-U.S. Gov't
Język:
English
Imprint Name(s):
Publication: New York Ny : Springer Verlag
Original Publication: Berlin, New York, Springer International.
MeSH Terms:
Anabolic Agents*/pharmacology
Teriparatide*/pharmacology
Administration, Oral ; Animals ; Apigenin/pharmacology ; Bone Density ; Female ; Mice ; Osteogenesis ; Ovariectomy
References:
Benedetti MG, Furlini G, Zati A, Mauro GL (2018) The effectiveness of physical exercise on bone density in osteoporotic patients. Biomed Res Int 2018:4840531. (PMID: 10.1155/2018/4840531)
Sozen T, Ozisik L, Calik Basaran N (2017) An overview and management of osteoporosis. Eur J Rheumatol 4:46–56. https://doi.org/10.5152/eurjrheum.2016.048. (PMID: 10.5152/eurjrheum.2016.04828293453)
Tella SH, Gallagher JC (2014) Prevention and treatment of postmenopausal osteoporosis. J Steroid Biochem Mol Biol 142:155–170. (PMID: 10.1016/j.jsbmb.2013.09.008)
Haas AV, LeBoff MS (2018) Osteoanabolic agents for osteoporosis. J Endocr Soc 2:922–932. https://doi.org/10.1210/js.2018-00118. (PMID: 10.1210/js.2018-00118300879476065487)
Chen JS, Sambrook PN (2012) Antiresorptive therapies for osteoporosis: a clinical overview. Nat Rev Endocrinol 8:81–91. (PMID: 10.1038/nrendo.2011.146)
Bandeira L, Lewiecki EM, Bilezikian JP (2017) Romosozumab for the treatment of osteoporosis. Expert Opin Biol Ther 17:255–263. https://doi.org/10.1080/14712598.2017.1280455. (PMID: 10.1080/14712598.2017.128045528064540)
Drake MT, Clarke BL, Khosla S (2008) Bisphosphonates: mechanism of action and role in clinical practice. Mayo Clin Proc 83:1032–1045. (PMID: 10.4065/83.9.1032)
Russow G, Jahn D, Appelt J et al (2019) Anabolic therapies in osteoporosis and bone regeneration. Int J Mol Sci 20(1):83. (PMID: 10.3390/ijms20010083)
Krohe M, Eek D, Mazar I et al (2016) Patient-reported preferences for oral versus intravenous administration for the treatment of cancer: a review of the literature. Patient Prefer Adherence 10:1609–1621. https://doi.org/10.2147/PPA.S106629. (PMID: 10.2147/PPA.S106629276018865003561)
Lu L, Lu L, Zhang J, Li J (2020) Potential risks of rare serious adverse effects related to long-term use of bisphosphonates: an overview of systematic reviews. J Clin Pharm Ther 45:45–51. (PMID: 10.1111/jcpt.13056)
Pal S, Kumar P, Ramakrishna E et al (2019) Extract and fraction of Cassia occidentalis L. (a synonym of Senna occidentalis) have osteogenic effect and prevent glucocorticoid-induced osteopenia. J Ethnopharmacol 235:8–18. https://doi.org/10.1016/j.jep.2019.01.029. (PMID: 10.1016/j.jep.2019.01.02930703497)
Pal S, Singh M, Porwal K et al (2021) Adiponectin receptors by increasing mitochondrial biogenesis and respiration promote osteoblast differentiation: discovery of isovitexin as a new class of small molecule adiponectin receptor modulator with potential osteoanabolic function. Eur J Pharmacol. https://doi.org/10.1016/j.ejphar.2021.174634. (PMID: 10.1016/j.ejphar.2021.17463434785210)
Park JA, Ha SK, Kang TH et al (2008) Protective effect of apigenin on ovariectomy-induced bone loss in rats. Life Sci 82:1217–1223. https://doi.org/10.1016/j.lfs.2008.03.021. (PMID: 10.1016/j.lfs.2008.03.02118508086)
Perez-Moral N, Saha S, Philo M et al (2018) Comparative bio-accessibility, bioavailability and bioequivalence of quercetin, apigenin, glucoraphanin and carotenoids from freeze-dried vegetables incorporated into a baked snack versus minimally processed vegetables: evidence from in vitro models and a. J Funct Foods 48:410–419. https://doi.org/10.1016/j.jff.2018.07.035. (PMID: 10.1016/j.jff.2018.07.035303446496189524)
Elhennawy MG, Lin HS (2018) Dose- and time-dependent pharmacokinetics of apigenin trimethyl ether. Eur J Pharm Sci 118:96–102. https://doi.org/10.1016/j.ejps.2018.03.022. (PMID: 10.1016/j.ejps.2018.03.02229574080)
Kumar S, Pandey AK (2013) Chemistry and biological activities of flavonoids: an overview. Sci World J. https://doi.org/10.1155/2013/162750. (PMID: 10.1155/2013/162750)
Swarnkar G, Sharan K, Siddiqui JA et al (2012) A naturally occurring naringenin derivative exerts potent bone anabolic effects by mimicking oestrogen action on osteoblasts. Br J Pharmacol 165:1526–1542. https://doi.org/10.1111/j.1476-5381.2011.01637.x. (PMID: 10.1111/j.1476-5381.2011.01637.x218643133372735)
Sharan K, Mishra JS, Swarnkar G et al (2011) A novel quercetin analogue from a medicinal plant promotes peak bone mass achievement and bone healing after injury and exerts an anabolic effect on osteoporotic bone: the role of aryl hydrocarbon receptor as a mediator of osteogenic action. J Bone Miner Res 26:2096–2111. https://doi.org/10.1002/jbmr.434. (PMID: 10.1002/jbmr.43421638315)
Hostetler GL, Ralston RA, Schwartz SJ (2017) Flavones: food sources, bioavailability, metabolism, and bioactivity. Adv Nutr 8:423–435. (PMID: 10.3945/an.116.012948)
China SP, Pal S, Chattopadhyay S et al (2017) Globular adiponectin reverses osteo-sarcopenia and altered body composition in ovariectomized rats. Bone 105:75–86. https://doi.org/10.1016/j.bone.2017.08.005. (PMID: 10.1016/j.bone.2017.08.00528811200)
Pal S, Mittapelly N, Husain A et al (2020) A butanolic fraction from the standardized stem extract of Cassia occidentalis L. delivered by a self-emulsifying drug delivery system protects rats from glucocorticoid-induced osteopenia and muscle atrophy. Sci Rep 10:195–209. https://doi.org/10.1038/s41598-019-56853-6. (PMID: 10.1038/s41598-019-56853-6319326036957531)
Pal S, Rashid M, Singh SK et al (2020) Skeletal restoration by phosphodiesterase 5 inhibitors in osteopenic mice: evidence of osteoanabolic and osteoangiogenic effects of the drugs. Bone 135:115305. https://doi.org/10.1016/j.bone.2020.115305. (PMID: 10.1016/j.bone.2020.11530532126313)
Tripathi JK, Pal S, Awasthi B et al (2015) Variants of self-assembling peptide, KLD-12 that show both rapid fracture healing and antimicrobial properties. Biomaterials 56:92–103. https://doi.org/10.1016/j.biomaterials.2015.03.046. (PMID: 10.1016/j.biomaterials.2015.03.04625934283)
Pal S, Sayeed M, Kumar A et al (2021) Self-assembling nano-globular peptide from human lactoferrin acts as a systemic enhancer of bone regeneration: a novel peptide for orthopedic application. ACS Appl Mater Interfaces 13:17300–17315. https://doi.org/10.1021/acsami.1c01513. (PMID: 10.1021/acsami.1c0151333830736)
Pal S, Porwal K, Singh H et al (2019) Reversal of osteopenia in ovariectomized rats by pentoxifylline: evidence of osteogenic and osteo-angiogenic roles of the drug. Calcif Tissue Int 105:294–307. https://doi.org/10.1007/s00223-019-00567-4. (PMID: 10.1007/s00223-019-00567-431175387)
Pal S, Khan K, China SP et al (2016) Theophylline, a methylxanthine drug induces osteopenia and alters calciotropic hormones, and prophylactic vitamin D treatment protects against these changes in rats. Toxicol Appl Pharmacol 295:12–25. https://doi.org/10.1016/j.taap.2016.02.002. (PMID: 10.1016/j.taap.2016.02.00226851681)
Pal China S, Pal S, Chattopadhyay S et al (2018) The wakefulness promoting drug Modafinil causes adenosine receptor-mediated upregulation of receptor activator of nuclear factor κB ligand in osteoblasts: negative impact of the drug on peak bone accrual in rats. Toxicol Appl Pharmacol 348:22–31. https://doi.org/10.1016/j.taap.2018.04.006. (PMID: 10.1016/j.taap.2018.04.00629649498)
Khan K, Singh A, Mittal M et al (2012) [6]-Gingerol induces bone loss in ovary intact adult mice and augments osteoclast function via the transient receptor potential vanilloid 1 channel. Mol Nutr Food Res 56:1860–1873. https://doi.org/10.1002/mnfr.201200200. (PMID: 10.1002/mnfr.20120020023034900)
Riyazuddin M, Husain A, Verma S et al (2020) Simultaneous quantification of five biomarkers in ethanolic extract of: Cassia occidentalis Linn. stem using liquid chromatography tandem mass spectrometry: application to its pharmacokinetic studies. RSC Adv 10:4579–4588. https://doi.org/10.1039/c9ra07482a. (PMID: 10.1039/c9ra07482a354952609049199)
Pal S, Maurya SK, Chattopadhyay S et al (2019) The osteogenic effect of liraglutide involves enhanced mitochondrial biogenesis in osteoblasts. Biochem Pharmacol 164:34–44. https://doi.org/10.1016/j.bcp.2019.03.024. (PMID: 10.1016/j.bcp.2019.03.024308857667234838)
Delgado-Calle J, Sato AY, Bellido T (2017) Role and mechanism of action of sclerostin in bone. Bone 96:29–37. https://doi.org/10.1016/j.bone.2016.10.007. (PMID: 10.1016/j.bone.2016.10.00727742498)
Ardawi MSM, Rouzi AA, Al-Sibiani SA et al (2012) High serum sclerostin predicts the occurrence of osteoporotic fractures in postmenopausal women: the Center of Excellence for Osteoporosis research study. J Bone Miner Res 27:2592–2602. https://doi.org/10.1002/jbmr.1718. (PMID: 10.1002/jbmr.171822836717)
Gaudio A, Pennisi P, Bratengeier C et al (2010) Increased sclerostin serum levels associated with bone formation and resorption markers in patients with immobilization-induced bone loss. J Clin Endocrinol Metab 95:2248–2253. https://doi.org/10.1210/jc.2010-0067. (PMID: 10.1210/jc.2010-006720305005)
Arasu A, Cawthon PM, Lui LY et al (2012) Serum sclerostin and risk of hip fracture in older Caucasian women. J Clin Endocrinol Metab 97:2027–2032. https://doi.org/10.1210/jc.2011-3419. (PMID: 10.1210/jc.2011-3419224663413387417)
Kim BJ, Lee SH, Koh JM (2020) Potential biomarkers to improve the prediction of osteoporotic fractures. Endocrinol Metab 35:55–63. (PMID: 10.3803/EnM.2020.35.1.55)
Tu X, Rhee Y, Condon KW et al (2012) Sost downregulation and local Wnt signaling are required for the osteogenic response to mechanical loading. Bone 50:209–217. https://doi.org/10.1016/j.bone.2011.10.025. (PMID: 10.1016/j.bone.2011.10.02522075208)
Osterhoff G, Morgan EF, Shefelbine SJ et al (2016) Bone mechanical properties and changes with osteoporosis. Injury 47:S11–S20. https://doi.org/10.1016/S0020-1383(16)47003-8. (PMID: 10.1016/S0020-1383(16)47003-8273382214955555)
Turunen MJ, Le Cann S, Tudisco E et al (2020) Sub-trabecular strain evolution in human trabecular bone. Sci Rep. https://doi.org/10.1038/s41598-020-69850-x. (PMID: 10.1038/s41598-020-69850-x327968597429852)
Hart NH, Nimphius S, Rantalainen T et al (2017) Mechanical basis of bone strength: influence of bone material, bone structure and muscle action. J Musculoskelet Neuronal Interact 17:114–139. (PMID: 288604145601257)
Pal S, Porwal K, Rajak S et al (2020) Selective dietary polyphenols induce differentiation of human osteoblasts by adiponectin receptor 1-mediated reprogramming of mitochondrial energy metabolism. Biomed Pharmacother. https://doi.org/10.1016/j.biopha.2020.110207. (PMID: 10.1016/j.biopha.2020.11020732776872)
Singh AK, Joharapurkar AA, Khan MP et al (2014) Orally active osteoanabolic agent GTDF binds to adiponectin receptors, with a preference for adipoR1, induces adiponectin-associated signaling, and improves metabolic health in a rodent model of diabetes. Diabetes 63:3530–3540. https://doi.org/10.2337/db13-1619. (PMID: 10.2337/db13-161924848063)
Walle T (2011) Bioavailability of resveratrol. Ann NY Acad Sci 1215:9–15. https://doi.org/10.1111/j.1749-6632.2010.05842.x. (PMID: 10.1111/j.1749-6632.2010.05842.x21261636)
Zhu M, Chen Y, Li RC (2000) Oral absorption and bioavailability of tea catechins. Planta Med 66:444–447. https://doi.org/10.1055/s-2000-8599. (PMID: 10.1055/s-2000-859910909265)
Sharan K, Swarnkar G, Siddiqui JA et al (2010) A novel flavonoid, 6-C-β-D-glucopyranosyl-(2S, 3S)-(+)-3′, 4′,5,7-tetrahydroxyflavanone, isolated from Ulmus wallichiana Planchon mitigates ovariectomy-induced osteoporosis in rats. Menopause 17:577–586. https://doi.org/10.1097/gme.0b013e3181d2ce7f. (PMID: 10.1097/gme.0b013e3181d2ce7f20393370)
Tsai JN, Uihlein AV, Lee H et al (2013) Teriparatide and denosumab, alone or combined, in women with postmenopausal osteoporosis: the DATA study randomised trial. Lancet 382:50–56. https://doi.org/10.1016/S0140-6736(13)60856-9. (PMID: 10.1016/S0140-6736(13)60856-9236836004083737)
Kerschan-Schindl K (2020) Romosozumab: a novel bone anabolic treatment option for osteoporosis? Wien Med Wochenschr 170:124–131. https://doi.org/10.1007/s10354-019-00721-5. (PMID: 10.1007/s10354-019-00721-531858345)
Augustine M, Horwitz MJ (2013) Parathyroid hormone and parathyroid hormone-related protein analogs as therapies for osteoporosis. Curr Osteoporos Rep 11:400–406. https://doi.org/10.1007/s11914-013-0171-2. (PMID: 10.1007/s11914-013-0171-224078470)
Wei W, Zeve D, Suh JM et al (2011) Biphasic and dosage-dependent regulation of osteoclastogenesis by β-catenin. Mol Cell Biol 31:4706–4719. https://doi.org/10.1128/mcb.05980-11. (PMID: 10.1128/mcb.05980-11218760003232928)
Singh AK, Shree S, Chattopadhyay S et al (2017) Small molecule adiponectin receptor agonist GTDF protects against skeletal muscle atrophy. Mol Cell Endocrinol 439:273–285. https://doi.org/10.1016/j.mce.2016.09.013. (PMID: 10.1016/j.mce.2016.09.01327645900)
Ozcivici E, Luu YK, Adler B et al (2010) Mechanical signals as anabolic agents in bone. Nat Rev Rheumatol 6:50–59. (PMID: 10.1038/nrrheum.2009.239)
Wang X, Jiang L, Shao X (2021) Association analysis of insulin resistance and osteoporosis risk in Chinese patients with T2DM. Ther Clin Risk Manag 17:909–916. https://doi.org/10.2147/TCRM.S328510. (PMID: 10.2147/TCRM.S328510345119178418372)
Contributed Indexing:
Keywords: Adiponectin receptor; Fracture healing; Osteoanabolic; Osteoblast; Ovariectomy
Substance Nomenclature:
0 (Anabolic Agents)
10T9CSU89I (Teriparatide)
7V515PI7F6 (Apigenin)
KTQ9R9MS0Q (isovitexin)
Entry Date(s):
Date Created: 20220422 Date Completed: 20220722 Latest Revision: 20220806
Update Code:
20240104
DOI:
10.1007/s00223-022-00979-9
PMID:
35451627
Czasopismo naukowe
Isovitexin (apigenin-6C-glucopyranose) is found in several food items and medicinal plants. Recently, we showed that isovitexin stimulated osteoblast differentiation through mitochondrial biogenesis and respiration that required adiponectin receptors (AdipoRs). Here, we studied whether oral isovitexin has a bone anabolic effect in vivo. At first, using a femur osteotomy model in adult mice, we compared the bone regenerative effect of isovitexin and apigenin. Whereas isovitexin-stimulated bone formation at the osteotomy site at 2.5 mg/kg and 5 mg/kg dose, apigenin had no effect. Subsequently, we tested the effect of isovitexin (5 mg/kg) in ovariectomized (OVX) osteopenic mice and observed that it restored bone mass and architecture of trabecular bones (femur metaphysis and fifth lumbar vertebra/L5) and cortical bones (femur diaphysis). Isovitexin completely restored bone strength at L5 (compressive strength) and femur (bending strength) in OVX mice. The bone anabolic effect of isovitexin was demonstrated by the increased surface referent bone formation parameters, increased expression of osteogenic genes (Runx2, bone morphogenetic protein-2 and type 1 collagen) in bones, and increased serum procollagen type 1N-terminal propeptide in OVX mice and these were on a par with teriparatide. Isovitexin inhibited bone and serum sclerostin as well as the serum type I collagen cross-linked C-telopeptide in OVX mice. Isovitexin has an oral bioavailability of 14.58%. Taken together, our data show that isovitexin had a significant oral bioavailability that translated to osteoanabolic effect equivalent to teriparatide and inhibited bone resorption, which implied a durable effect over teriparatide.
(© 2022. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.)

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies