Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Engineered Nanoerythrocytes Alleviate Central Nervous System Inflammation by Regulating the Polarization of Inflammatory Microglia.

Tytuł:
Engineered Nanoerythrocytes Alleviate Central Nervous System Inflammation by Regulating the Polarization of Inflammatory Microglia.
Autorzy:
Yin N; School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China.; Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou University, Zhengzhou, 450001, P. R. China.; Key Laboratory of Key Drug Preparation Technology Ministry of Education, Zhengzhou, 450001, P. R. China.
Zhao Y; School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China.; Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou University, Zhengzhou, 450001, P. R. China.; Key Laboratory of Key Drug Preparation Technology Ministry of Education, Zhengzhou, 450001, P. R. China.
Liu C; School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China.; Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou University, Zhengzhou, 450001, P. R. China.; Key Laboratory of Key Drug Preparation Technology Ministry of Education, Zhengzhou, 450001, P. R. China.
Yang Y; School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China.; Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou University, Zhengzhou, 450001, P. R. China.; Key Laboratory of Key Drug Preparation Technology Ministry of Education, Zhengzhou, 450001, P. R. China.
Wang ZH; School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China.; Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou University, Zhengzhou, 450001, P. R. China.; Key Laboratory of Key Drug Preparation Technology Ministry of Education, Zhengzhou, 450001, P. R. China.
Yu W; School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China.; Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou University, Zhengzhou, 450001, P. R. China.; Key Laboratory of Key Drug Preparation Technology Ministry of Education, Zhengzhou, 450001, P. R. China.
Zhang K; School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China.; Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou University, Zhengzhou, 450001, P. R. China.; Key Laboratory of Key Drug Preparation Technology Ministry of Education, Zhengzhou, 450001, P. R. China.
Zhang Z; School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China.; Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou University, Zhengzhou, 450001, P. R. China.; Key Laboratory of Key Drug Preparation Technology Ministry of Education, Zhengzhou, 450001, P. R. China.; State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou, 450001, P. R. China.
Liu J; School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China.; Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou University, Zhengzhou, 450001, P. R. China.; Key Laboratory of Key Drug Preparation Technology Ministry of Education, Zhengzhou, 450001, P. R. China.; State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou, 450001, P. R. China.
Zhang Y; School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China.; Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou University, Zhengzhou, 450001, P. R. China.; Key Laboratory of Key Drug Preparation Technology Ministry of Education, Zhengzhou, 450001, P. R. China.; State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou, 450001, P. R. China.
Shi J; School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China.; Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou University, Zhengzhou, 450001, P. R. China.; Key Laboratory of Key Drug Preparation Technology Ministry of Education, Zhengzhou, 450001, P. R. China.; State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou, 450001, P. R. China.
Źródło:
Advanced materials (Deerfield Beach, Fla.) [Adv Mater] 2022 Jul; Vol. 34 (27), pp. e2201322. Date of Electronic Publication: 2022 Jun 03.
Typ publikacji:
Journal Article
Język:
English
Imprint Name(s):
Publication: Sept. 3, 1997- : Weinheim : Wiley-VCH
Original Publication: Deerfield Beach, FL : VCH Publishers, 1989-
MeSH Terms:
Inflammation*/metabolism
Microglia*
Anti-Inflammatory Agents/pharmacology ; Blood-Brain Barrier ; Humans ; Signal Transduction
References:
a) L. Xiao, F. Wei, Y. Zhou, G. J. Anderson, D. M. Frazer, Y. C. Lim, T. Liu, Y. Xiao, Nano Lett. 2020, 20, 478;.
b) R. M. Ransohoff, Science 2016, 353, 777;.
c) N. Buaron, A. Mangraviti, F. Volpin, A. Liu, M. Pedone, E. Sankey, D. Aranovich, I. Adar, F. J. Rodriguez, A. Nyska, R. Goldbart, T. Traitel, H. Brem, B. Tyler, J. Kost, Adv. Funct. Mater. 2021, 31, 2100643.
a) M. W. Salter, B. Stevens, Nat. Med. 2017, 23, 1018;.
b) S. Hickman, S. Izzy, P. Sen, L. Morsett, J. El Khoury, Nat. Neurosci. 2018, 21, 1359;.
c) R. Ronzano, T. Roux, M. Thetiot, M. S. Aigrot, L. Richard, F. X. Lejeune, E. Mazuir, J. M. Vallat, C. Lubetzki, A. Desmazieres, Nat. Commun. 2021, 12, 5219.
Y. Li, X. Teng, C. Yang, Y. Wang, L. Wang, Y. Dai, H. Sun, J. Li, Angew. Chem., Int. Ed. 2021, 60, 5083.
F. Zeng, Y. Wu, X. Li, X. Ge, Q. Guo, X. Lou, Z. Cao, B. Hu, N. J. Long, Y. Mao, C. Li, Angew. Chem., Int. Ed. 2018, 57, 5808.
C. Li, Z. Zhao, Y. Luo, T. Ning, P. Liu, Q. Chen, Y. Chu, Q. Guo, Y. Zhang, W. Zhou, H. Chen, Z. Zhou, Y. Wang, B. Su, H. You, T. Zhang, X. Li, H. Song, C. Li, T. Sun, C. Jiang, Adv. Sci. 2021, 8, 2101526.
C. T. Ekdahl, Z. Kokaia, O. Lindvall, Neuroscience 2009, 158, 1021.
a) Y. Lu, C. Li, Q. Chen, P. Liu, Q. Guo, Y. Zhang, X. Chen, Y. Zhang, W. Zhou, D. Liang, Y. Zhang, T. Sun, W. Lu, C. Jiang, Adv. Mater. 2019, 31, 1808361;.
b) X. Han, T. Xu, Q. Fang, H. Zhang, L. Yue, G. Hu, L. Sun, Redox Biol. 2021, 44, 102010;.
c) H. Liu, Y. Han, T. Wang, H. Zhang, Q. Xu, J. Yuan, Z. Li, J. Am. Chem. Soc. 2020, 142, 21730;.
d) Y. Ma, J. Wang, Y. Wang, G.-Y. Yang, Prog. Neurobiol. 2017, 157, 247;.
e) T. Ganbold, Q. Bao, J. Zandan, A. Hasi, H. Baigude, ACS Appl. Mater. Interfaces 2020, 12, 11363.
a) Y. Lu, Z. Guo, Y. Zhang, C. Li, Y. Zhang, Q. Guo, Q. Chen, X. Chen, X. He, L. Liu, C. Ruan, T. Sun, B. Ji, W. Lu, C. Jiang, Adv. Sci. 2019, 6, 1801586;.
b) S. Kobashi, T. Terashima, M. Katagi, Y. Nakae, J. Okano, Y. Suzuki, M. Urushitani, H. Kojima, Mol. Ther. 2020, 28, 254.
Y. Wang, J. Pang, Q. Wang, L. Yan, L. Wang, Z. Xing, C. Wang, J. Zhang, L. Dong, Adv. Sci. 2021, 8, 2004929.
J. C. Ullman, A. Arguello, J. A. Getz, A. Bhalla, C. S. Mahon, J. Wang, T. Giese, C. Bedard, D. J. Kim, J. R. Blumenfeld, N. Liang, R. Ravi, A. A. Nugent, S. S. Davis, C. Ha, J. Duque, H. L. Tran, R. C. Wells, S. Lianoglou, V. M. Daryani, W. Kwan, H. Solanoy, N. Hoang, T. Earr, J. C. Dugas, M. D. Tuck, J. L. Harvey, M. L. Reyzer, R. M. Caprioli, S. Hall, et al., Sci. Transl. Med. 2020, 12, eaay1163.
a) R. Pandit, L. Chen, J. Götz, Adv. Drug Delivery Rev. 2020, 1, 165;.
b) A. D'Souza, K. M. Dave, R. A. Stetler, S. M. D, Adv. Drug Delivery Rev. 2021, 171, 332.
a) Q. Bao, P. Hu, Y. Xu, T. Cheng, C. Wei, L. Pan, J. Shi, ACS Nano 2018, 12, 6794;.
b) H. Wu, X. Jiang, Y. Li, Y. Zhou, T. Zhang, P. Zhi, J. Gao, Adv. Funct. Mater. 2020, 30, 2006169;.
c) W. Lv, J. Xu, X. Wang, X. Li, Q. Xu, H. Xin, ACS Nano 2018, 12, 5417;.
d) J. Xu, X. Wang, H. Yin, X. Cao, Q. Hu, W. Lv, Q. Xu, Z. Gu, H. Xin, ACS Nano 2019, 13, 8577;.
e) H. Wang, X. Xu, X. Guan, S. Shen, X. Huang, G. Kai, S. Zhao, W. Ruan, L. Zhang, T. Pang, R. Mo, Nano Lett. 2020, 20, 1542;.
f) O. Rajkovic, C. Gourmel, R. d'Arcy, R. Wong, I. Rajkovic, N. Tirelli, E. Pinteaux, Adv. Ther. 2019, 2, 1900038.
S. Qing, C. Lyu, L. Zhu, C. Pan, S. Wang, F. Li, J. Wang, H. Yue, X. Gao, R. Jia, W. Wei, G. Ma, Adv. Mater. 2020, 32, 2002085.
a) X. Han, C. Wang, Z. Liu, Bioconjugate Chem. 2018, 29, 852;.
b) Q. Xia, Y. Zhang, Z. Li, X. Hou, N. Feng, Acta Pharm. Sin. B 2019, 9, 675;.
c) J. Shao, I. A. B. Pijpers, S. Cao, D. S. Williams, X. Yan, J. Li, L. K. E. A. Abdelmohsen, J. C. M. van Hest, Adv. Sci. 2019, 6, 1801678.
a) F. F. Dutra, M. T. Bozza, Front. Pharmacol. 2014, 5, 115;.
b) M. T. Bozza, V. Jeney, Front. Immunol. 2020, 11, 1323.
R. Beschorner, D. Adjodah, J. M. Schwab, M. Mittelbronn, I. Pedal, R. Mattern, H. J. Schluesener, R. Meyermann, Acta Neuropathol. 2000, 100, 377.
L. You, J. Wang, T. Liu, Y. Zhang, X. Han, T. Wang, S. Guo, T. Dong, J. Xu, G. J. Anderson, Q. Liu, Y.-Z. Chang, X. Lou, G. Nie, ACS Nano 2018, 12, 4123.
T. Terashima, N. Ogawa, Y. Nakae, T. Sato, M. Katagi, J. Okano, H. Maegawa, H. Kojima, Mol. Ther. Nucleic Acids 2018, 11, 203.
J. Shi, W. Yu, L. Xu, N. Yin, W. Liu, K. Zhang, J. Liu, Z. Zhang, Nano Lett. 2020, 20, 780.
a) H. Qin, C. A. Wilson, S. J. Lee, X. Zhao, E. N. Benveniste, Blood 2005, 106, 3114;.
b) P. Cao, C. Chen, A. Liu, Q. Shan, X. Zhu, C. Jia, X. Peng, M. Zhang, Z. Farzinpour, W. Zhou, H. Wang, J.-N. Zhou, X. Song, L. Wang, W. Tao, C. Zheng, Y. Zhang, Y.-Q. Ding, Y. Jin, L. Xu, Z. Zhang, Neuron 2021, 109, 2573;.
c) A. Das, S. H. Kim, S. Arifuzzaman, T. Yoon, J. C. Chai, Y. S. Lee, K. S. Park, K. H. Jung, Y. G. Chai, J. Neuroinflammation 2016, 13, 182.
a) S. Liao, J. Wu, R. Liu, S. Wang, J. Luo, Y. Yang, Y. Qin, T. Li, X. Zheng, J. Song, X. Zhao, C. Xiao, Y. Zhang, L. Bian, P. Jia, Y. Bai, X. Zheng, Redox Biol. 2020, 36, 101644;.
b) K. J. Min, J. H. Jang, T. K. Kwon, J. Pineal Res. 2012, 52, 296.
V. Stratoulias, J. L. Venero, M. E. Tremblay, B. Joseph, EMBO J. 2019, 38, 101997.
Q. Li, Y. Cao, C. Dang, B. Han, R. Han, H. Ma, J. Hao, L. Wang, EMBO Mol. Med. 2020, 12, 11002.
a) X. Dong, J. Gao, C. Y. Zhang, C. Hayworth, M. Frank, Z. Wang, ACS Nano 2019, 13, 1272;.
b) E. Esposito, B. J. Ahn, J. Shi, Y. Nakamura, J. H. Park, E. T. Mandeville, Z. Yu, S. J. Chan, R. Desai, A. Hayakawa, X. Ji, E. H. Lo, K. Hayakawa, Nat. Commun. 2019, 10, 5306;.
c) L. Kang, H. Yu, X. Yang, Y. Zhu, X. Bai, R. Wang, Y. Cao, H. Xu, H. Luo, L. Lu, M.-J. Shi, Y. Tian, W. Fan, B.-Q. Zhao, Nat. Commun. 2020, 11, 2488.
a) C. Tang, C. Wang, Y. Zhang, L. Xue, Y. Li, C. Ju, C. Zhang, Nano Lett. 2019, 19, 4470;.
b) Y. Xia, G. Hu, Y. Chen, J. Yuan, J. Zhang, S. Wang, Q. Li, Y. Wang, Z. Deng, ACS Nano 2021, 15, 7370.
T. Ben-Mordechai, D. Kain, R. Holbova, N. Landa, L. P. Levin, I. Elron-Gross, Y. Glucksam-Galnoy, M. S. Feinberg, R. Margalit, J. Leor, J. Controlled Release 2017, 257, 21.
M. Pfefferle, G. Ingoglia, C. A. Schaer, K. Hansen, N. Schulthess, R. Humar, D. J. Schaer, F. Vallelian, Front. Immunol. 2021, 12, 680855.
G. Wu, J. Zhang, Q. Zhao, W. Zhuang, J. Ding, C. Zhang, H. Gao, D. W. Pang, K. Pu, H. Y. Xie, Angew. Chem., Int. Ed. 2020, 59, 4068.
G. Wu, J. Zhang, Q. Zhao, W. Zhuang, J. Ding, C. Zhang, H. Gao, D.-W. Pang, K. Pu, H.-Y. Xie, Angew. Chem., Int. Ed. 2020, 59, 4068.
a) Y. Lee, H. Kim, S. Kang, J. Lee, J. Park, S. Jon, Angew. Chem., Int. Ed. 2016, 55, 7460;.
b) S. Nagao, K. Taguchi, H. Sakai, R. Tanaka, H. Horinouchi, H. Watanabe, K. Kobayashi, M. Otagiri, T. Maruyama, Biomaterials 2014, 35, 6553.
T. Kreisel, M. G. Frank, T. Licht, R. Reshef, O. Ben-Menachem-Zidon, M. V. Baratta, S. F. Maier, R. Yirmiya, Mol. Psychiatry 2014, 19, 699.
J. Zhang, P. Rong, L. Zhang, H. He, T. Zhou, Y. Fan, L. Mo, Q. Zhao, Y. Han, S. Li, Y. Wang, W. Yan, H. Chen, Z. You, Sci. Adv. 2021, 7, eabb9888.
L. He, G. Huang, H. Liu, C. Sang, X. Liu, T. Chen, Sci. Adv. 2020, 6, eaay9751.
L. Lu, S. Qi, Y. Chen, H. Luo, S. Huang, X. Yu, Q. Luo, Z. Zhang, Biomaterials 2020, 245, 119987.
a) G.-R. Kim, W.-J. Kim, S. Lim, H.-G. Lee, J.-H. Koo, K.-H. Nam, S.-M. Kim, S.-D. Park, J.-M. Choi, Adv. Sci. 2021, 8, 2004973;.
b) M. Riazifar, M. R. Mohammadi, E. J. Pone, A. Yeri, C. Lasser, A. I. Segaliny, L. L. McIntyre, G. V. Shelke, E. Hutchins, A. Hamamoto, E. N. Calle, R. Crescitelli, W. Liao, V. Pham, Y. Yin, J. Jararaman, J. R. T. Lakey, C. M. Walsh, K. Van Keuren-Jensen, J. Lotvall, W. Zhao, ACS Nano 2019, 13, 6670.
Grant Information:
82073395 National Natural Science Foundation of China; 81972907 National Natural Science Foundation of China; 82171333 National Natural Science Foundation of China; 82073787 National Natural Science Foundation of China; 2021HYTP047 Youth Talent Promotion Foundation of Henan Province; 2020TQ0288 Postdoctoral Science Foundation of China; 2021M690140 Postdoctoral Science Foundation of China
Contributed Indexing:
Keywords: blood-brain barrier; ischemic stroke; microglia; multiple sclerosis; nanoerythrocyte vesicles
Substance Nomenclature:
0 (Anti-Inflammatory Agents)
Entry Date(s):
Date Created: 20220428 Date Completed: 20220708 Latest Revision: 20220708
Update Code:
20240105
DOI:
10.1002/adma.202201322
PMID:
35483045
Czasopismo naukowe
Microglial polarization is one of the most promising therapeutic strategies for multiple central nervous system (CNS) disorders. However, safe, effective, and controllable microglial regulation still faces formidable challenges. Although some anti-inflammatory factors promote microglia polarization, their short half-life, high cost, unpredictable in vivo behavior, and complex delivery operations, hamper their clinical application. Here, inspired by the natural microhemorrhage cleaning mechanism, an MG1 peptide and RVG29 peptide engineered nanoerythrocyte (NEMR) that can reprogram microglia are developed from classical M1 toward alternative M2 by inducing heme oxygenase-1 (HO-1), stimulating Notch1/Hes1/Stat3 signaling, and further inhibiting NF-κB p65 translocation. Moreover, anti-inflammatory carbon monoxide (CO) and bilirubin produced by endogenous metabolism of heme further reinforces the anti-inflammatory effect. In middle cerebral artery occlusion and experimental autoimmune encephalomyelitis models, a satisfactory prognosis is achieved, with precise regulation of inflammatory microglia in lesion sites, increased expression of anti-inflammatory factors, reduced blood-brain barrier permeability, as well as promotion of neurogenesis and functional recovery. Furthermore, NEMR can be integrated with clinical therapeutic agents, which facilitates precise drug delivery to enhance therapeutic effects. Hence, the natural nanoerythrocytes, as a feasible, efficient, safe, and practical tool, provides a new strategy for rebalancing of the immune environment in the CNS disorders.
(© 2022 Wiley-VCH GmbH.)

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies