Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Comprehensive view of microscopic interactions between DNA-coated colloids.

Tytuł:
Comprehensive view of microscopic interactions between DNA-coated colloids.
Autorzy:
Cui F; Department of Physics, New York University, New York, NY, USA.
Marbach S; Courant Institute of Mathematical Sciences, New York University, New York, NY, USA.; CNRS, Sorbonne Université, Physicochimie des Electrolytes et Nanosystèmes, Interfaciaux, F-75005, Paris, France.
Zheng JA; Department of Physics, New York University, New York, NY, USA.
Holmes-Cerfon M; Courant Institute of Mathematical Sciences, New York University, New York, NY, USA.
Pine DJ; Department of Physics, New York University, New York, NY, USA. .; Department of Chemical & Biomolecular Engineering, New York University, New York, NY, USA. .
Źródło:
Nature communications [Nat Commun] 2022 Apr 28; Vol. 13 (1), pp. 2304. Date of Electronic Publication: 2022 Apr 28.
Typ publikacji:
Journal Article; Research Support, U.S. Gov't, Non-P.H.S.; Research Support, Non-U.S. Gov't
Język:
English
Imprint Name(s):
Original Publication: [London] : Nature Pub. Group
MeSH Terms:
Colloids*/chemistry
DNA*/chemistry
Base Sequence ; Crystallization ; Nanotechnology
References:
Mirkin, C. A., Letsinger, R. L., Mucic, R. C. & Storhoff, J. J. A DNA-based method for rationally assembling nanoparticles into macroscopic materials. Nature 382, 607–609 (1996). (PMID: 875712910.1038/382607a0)
Alivisatos, A. P. et al. Organization of ‘nanocrystal molecules’ using DNA. Nature 382, 609–611 (1996). (PMID: 875713010.1038/382609a0)
Park, S. Y., Lytton-Jean, A. K., Lee, B., Weigand, S. & Schatz, G. C. DNA-programmable nanoparticle crystallization. Nature 451, 553–556 (2008). (PMID: 1823549710.1038/nature06508)
Nykypanchuk, D., Maye, M. M., Van Der Lelie, D. & Gang, O. DNA-guided crystallization of colloidal nanoparticles. Nature 451, 549–552 (2008). (PMID: 1823549610.1038/nature06560)
Macfarlane, R. J. et al. Nanoparticle superlattice engineering with DNA. Science 334, 204–208 (2011). (PMID: 2199838210.1126/science.1210493)
Rogers, W. B., Shih, W. M. & Manoharan, V. N. Using DNA to program the self-assembly of colloidal nanoparticles and microparticles. Nat. Rev. Mater. 1, 16008–16008 (2016). (PMID: 10.1038/natrevmats.2016.8)
Subramanian, G., Manoharan, V. N., Thorne, J. D. & Pine, D. J. Ordered macroporous materials by colloidal assembly: a possible route to photonic bandgap materials. Adv. Mater. 11, 1261–1265 (1999). (PMID: 10.1002/(SICI)1521-4095(199910)11:15<1261::AID-ADMA1261>3.0.CO;2-A)
Vlasov, Y. A., Bo, X.-Z., Sturm, J. C. & Norris, D. J. On-chip natural assembly of silicon photonic bandgap crystals. Nature 414, 289–293 (2001). (PMID: 1171352410.1038/35104529)
Vogel, N. et al. Color from hierarchy: Diverse optical properties of micron-sized spherical colloidal assemblies. Proc. Natl. Acad. Sci. 112, 10845–10850 (2015). (PMID: 26290583456823310.1073/pnas.1506272112)
Yang, S. et al. Feedback-driven self-assembly of symmetry-breaking optical metamaterials in solution. Nat. Nanotechnol. 9, 1002–1006 (2014). (PMID: 2536247510.1038/nnano.2014.243)
Probst, P. T., Mayer, M., Gupta, V., Steiner, A. M., Zhou, Z., Auernhammer, G. K., König, T. A. & Fery, A. Mechano-tunable chiral metasurfaces via colloidal assembly. Nat. Mater. 20, 1–5 (2021).
Qu, A. et al. Quantitative zeptomolar imaging of mirna cancer markers with nanoparticle assemblies. Proc. Natl. Acad. Sci. 116, 3391–3400 (2019). (PMID: 30808736639754210.1073/pnas.1810764116)
Chou, L. Y., Zagorovsky, K. & Chan, W. C. DNA assembly of nanoparticle superstructures for controlled biological delivery and elimination. Nat. Nanotechnol. 9, 148–155 (2014). (PMID: 24463361394737710.1038/nnano.2013.309)
Di Michele, L. et al. Multistep kinetic self-assembly of DNA-coated colloids. Nat. Commun. 4, 1–7 (2013). (PMID: 10.1038/ncomms3007)
Joshi, D. et al. Kinetic control of the coverage of oil droplets by DNA-functionalized colloids. Sci. Adv. 2, e1600881 (2016). (PMID: 27532053497555010.1126/sciadv.1600881)
Biancaniello, P. L., Kim, A. J. & Crocker, J. C. Colloidal interactions and self-assembly using DNA hybridization. Phys. Rev. Lett. 94, 058302 (2005). (PMID: 1578370510.1103/PhysRevLett.94.058302)
Rogers, W. B. & Manoharan, V. N. Programming colloidal phase transitions with DNA strand displacement. Science 347, 639–642 (2015). (PMID: 2565724410.1126/science.1259762)
Song, M., Ding, Y., Zerze, H., Snyder, M. A. & Mittal, J. Binary superlattice design by controlling DNA-mediated interactions. Langmuir 34, 991–998 (2018). (PMID: 2911173810.1021/acs.langmuir.7b02835)
He, M. et al. Colloidal diamond. Nature 585, 524–529 (2020). (PMID: 3296826110.1038/s41586-020-2718-6)
Rogers, W. B., Sinno, T. & Crocker, J. C. Kinetics and non-exponential binding of DNA-coated colloids. Soft Matter 9, 6412–6417 (2013). (PMID: 10.1039/c3sm50593f)
Mognetti, B. M. et al. Predicting DNA-mediated colloidal pair interactions. Proc. Natl. Acad. Sci. 109, E378–E379 (2012). (PMID: 22308446328937710.1073/pnas.1119991109)
Dreyfus, R. et al. Aggregation-disaggregation transition of DNA-coated colloids: experiments and theory. Phys. Rev. E 81, 041404 (2010). (PMID: 10.1103/PhysRevE.81.041404)
Angioletti-Uberti, S., Mognetti, B. M. & Frenkel, D. Theory and simulation of DNA-coated colloids: a guide for rational design. Phys. Chem. Chem. Phys. 18, 6373–6393 (2016). (PMID: 2686259510.1039/C5CP06981E)
Wu, K.-T. et al. Kinetics of DNA-coated sticky particles. Phys. Rev. E 88, 022304 (2013). (PMID: 10.1103/PhysRevE.88.022304)
Kim, A. J., Manoharan, V. N. & Crocker, J. C. Swelling-based method for preparing stable, functionalized polymer colloids. J. Am. Chem. Soc. 127, 1592–1593 (2005). (PMID: 1570096510.1021/ja0450051)
Wang, Y. et al. Synthetic strategies toward DNA-coated colloids that crystallize. J. Am. Chem. Soc. 137, 10760–10766 (2015). (PMID: 2619247010.1021/jacs.5b06607)
Wang, Y. et al. Colloids with valence and specific directional bonding. Nature 491, 51–55 (2012). (PMID: 2312822510.1038/nature11564)
Gong, Z., Hueckel, T., Yi, G.-R. & Sacanna, S. Patchy particles made by colloidal fusion. Nature 550, 234–238 (2017). (PMID: 2892266410.1038/nature23901)
Ducrot, E., He, M., Yi, G.-R. & Pine, D. J. Colloidal alloys with preassembled clusters and spheres. Nat. Mater. 16, 652–657 (2017). (PMID: 2825044610.1038/nmat4869)
Lin, H. et al. Clathrate colloidal crystals. Science 355, 931–935 (2017). (PMID: 2825493610.1126/science.aal3919)
Rogers, W. B. & Crocker, J. C. Direct measurements of DNA-mediated colloidal interactions and their quantitative modeling. Proc. Natl. Acad. Sci. 108, 15687–15692 (2011). (PMID: 21896714317911910.1073/pnas.1109853108)
Angioletti-Uberti, S. Understanding the self-assembly of DNA-coated colloids via theory and simulations. Front. Nanosci. 13, 87–123 (2019).
Merminod, S., Edison, J. R., Fang, H., Hagan, M. F. & Rogers, W. B. Avidity and surface mobility in multivalent ligand-receptor binding. Nanoscale 13, 12602–12612 (2021).
Milner, S. T. Compressing polymer “brushes”: a quantitative comparison of theory and experiment. EPL (Europhysics Letters) 7, 695 (1988). (PMID: 10.1209/0295-5075/7/8/005)
Parsegian, V. A. Van der Waals forces: a Handbook for Biologists, Chemists, Engineers, and Physicists (Cambridge University Press, 2005).
Nykypanchuk, D., Maye, M. M., Van Der Lelie, D. & Gang, O. DNA-based approach for interparticle interaction control. Langmuir 23, 6305–6314 (2007). (PMID: 1744779710.1021/la0637566)
Hueckel, T., Hocky, G. M., Palacci, J. & Sacanna, S. Ionic solids from common colloids. Nature 580, 487–490 (2020). (PMID: 3232207810.1038/s41586-020-2205-0)
Dreyfus, R. et al. Simple quantitative model for the reversible association of DNA coated colloids. Phys. Rev. Lett. 102, 048301 (2009). (PMID: 1925748110.1103/PhysRevLett.102.048301)
Varilly, P., Angioletti-Uberti, S., Mognetti, B. M. & Frenkel, D. A general theory of DNA-mediated and other valence-limited colloidal interactions. J. Chem. Phys. 137, 094108 (2012). (PMID: 2295755610.1063/1.4748100)
Angioletti-Uberti, S., Varilly, P., Mognetti, B. M., Tkachenko, A. V. & Frenkel, D. Communication: a simple analytical formula for the free energy of ligand–receptor-mediated interactions. J. Chem. Phys. 138, 021102 (2013). (PMID: 2332065810.1063/1.4775806)
Lowensohn, J., Hensley, A., Perlow-Zelman, M. & Rogers, W. B. Self-assembly and crystallization of DNA-coated colloids via linker-encoded interactions. Langmuir 36, 7100–7108 (2020). (PMID: 3201344410.1021/acs.langmuir.9b03391)
Fang, H., Hagan, M. F. & Rogers, W. B. Two-step crystallization and solid–solid transitions in binary colloidal mixtures. Proc. Natl. Acad. Sci. 117, 27927–27933 (2020). (PMID: 33122442766810310.1073/pnas.2008561117)
Wang, Y. et al. Crystallization of DNA-coated colloids. Nature Communications 6, 7253 (2015). (PMID: 2607802010.1038/ncomms8253)
Oh, J. S., Wang, Y., Pine, D. J. & Yi, G.-R. High-density PEO-b-DNA brushes on polymer particles for colloidal superstructures. Chem. Mater. 27, 8337–8344 (2015). (PMID: 10.1021/acs.chemmater.5b03683)
Vos, R. et al. Chemical vapor deposition of azidoalkylsilane monolayer films. Langmuir 34, 1400–1409 (2018). (PMID: 2929011610.1021/acs.langmuir.7b04011)
Prieve, D. C. & Frej, N. A. Total internal reflection microscopy: a quantitative tool for the measurement of colloidal forces. Langmuir 6, 396–403 (1990). (PMID: 10.1021/la00092a019)
Prieve, D. C. Measurement of colloidal forces with TIRM. Adv. Colloid Interface Sci. 82, 93–125 (1999). (PMID: 10.1016/S0001-8686(99)00012-3)
Valignat, M.-P., Theodoly, O., Crocker, J. C., Russel, W. B. & Chaikin, P. M. Reversible self-assembly and directed assembly of DNA-linked micrometer-sized colloids. Proc. Natl. Acad. Sci. 102, 4225–4229 (2005). (PMID: 1575807255328610.1073/pnas.0500507102)
Xu, Q., Feng, L., Sha, R., Seeman, N. & Chaikin, P. Subdiffusion of a sticky particle on a surface. Phys. Rev. Lett. 106, 228102 (2011). (PMID: 2170263510.1103/PhysRevLett.106.228102)
Youssef, M., Morin, A., Aubret, A., Sacanna, S. & Palacci, J. Rapid characterization of neutral polymer brush with a conventional zetameter and a variable pinch of salt. Soft Matter 16, 4274–4282 (2020). (PMID: 3230750710.1039/C9SM01850F)
Milner, S. T., Witten, T. & Cates, M. Theory of the grafted polymer brush. Macromolecules 21, 2610–2619 (1988). (PMID: 10.1021/ma00186a051)
Drobek, T., Spencer, N. D. & Heuberger, M. Compressing PEG brushes. Macromolecules 38, 5254–5259 (2005). (PMID: 10.1021/ma0504217)
Meng, X.-X. & Russel, W. B. Telechelic associative polymers: interactions between strongly stretched planar adsorbed layers. Macromolecules 36, 10112–10119 (2003). (PMID: 10.1021/ma0349027)
Shim, D. & Cates, M. Forces between asymmetric polymer brushes. J. Phys. 51, 701–707 (1990). (PMID: 10.1051/jphys:01990005108070100)
SantaLucia, J. A unified view of polymer, dumbbell, and oligonucleotide DNA nearest-neighbor thermodynamics. Proc. Natl Acad. Sci. 95, 1460–1465 (1998). (PMID: 94650371904510.1073/pnas.95.4.1460)
Cui, F. & Pine, D. J. Effect of photon counting shot noise on total internal reflection microscopy. Soft Matter 18, 162–171 (2022). (PMID: 10.1039/D1SM01587G)
Wang, X., Ramírez-Hinestrosa, S., Dobnikar, J. & Frenkel, D. The Lennard-Jones potential: when (not) to use it. Phys. Chem. Chem. Phys. 22, 10624–10633 (2020). (PMID: 3168194110.1039/C9CP05445F)
Das, A. & Limmer, D. T. Variational design principles for nonequilibrium colloidal assembly. J. Chem. Phys. 154, 014107 (2021). (PMID: 3341286710.1063/5.0038652)
Bevan, M. A. & Prieve, D. C. Hindered diffusion of colloidal particles very near to a wall: revisited. J. Chem. Phys. 113, 1228–1236 (2000). (PMID: 10.1063/1.481900)
Gardiner, C. W. et al. Handbook of Stochastic Methods, vol. 3 (Springer Berlin, 1985).
Brenner, H. The slow motion of a sphere through a viscous fluid towards a plane surface. Chem. Eng. Sci. 16, 242–251 (1961). (PMID: 10.1016/0009-2509(61)80035-3)
Lee-Thorp, J. P. & Holmes-Cerfon, M. Modeling the relative dynamics of DNA-coated colloids. Soft Matter 14, 8147–8159 (2018). (PMID: 3025994310.1039/C8SM01430B)
Licata, N. A. & Tkachenko, A. V. Colloids with key-lock interactions: nonexponential relaxation, aging, and anomalous diffusion. Phys. Rev. E 76, 041405 (2007). (PMID: 10.1103/PhysRevE.76.041405)
Wang, Y., Jenkins, I. C., McGinley, J. T., Sinno, T. & Crocker, J. C. Colloidal crystals with diamond symmetry at optical lengthscales. Nat. Commun. 8, 14173–14173 (2017). (PMID: 28194025531680610.1038/ncomms14173)
Sakai, T., Nishimura, S. I., Naito, T. & Saito, M. Influenza a virus hemagglutinin and neuraminidase act as novel motile machinery. Sci. Rep. 7, 1–11 (2017). (PMID: 10.1038/srep45043)
Müller, M., Lauster, D., Wildenauer, H. H., Herrmann, A. & Block, S. Mobility-based quantification of multivalent virus-receptor interactions: New insights into influenza a virus binding mode. Nano Lett. 19, 1875–1882 (2019). (PMID: 3071991710.1021/acs.nanolett.8b04969)
Hiki, S. & Kataoka, K. A facile synthesis of azido-terminated heterobifunctional poly (ethylene glycol) s for “click” conjugation. Bioconjugate Chem. 18, 2191–2196 (2007). (PMID: 10.1021/bc700152j)
Derjaguin, B. V. Untersuchungen über die reibung und adhäsion, IV. Kolloid-Zeitschrift 69, 155–164 (1934). (PMID: 10.1007/BF01433225)
Substance Nomenclature:
0 (Colloids)
9007-49-2 (DNA)
Entry Date(s):
Date Created: 20220428 Date Completed: 20220502 Latest Revision: 20221112
Update Code:
20240105
PubMed Central ID:
PMC9051097
DOI:
10.1038/s41467-022-29853-w
PMID:
35484104
Czasopismo naukowe
The self-assembly of DNA-coated colloids into highly-ordered structures offers great promise for advanced optical materials. However, control of disorder, defects, melting, and crystal growth is hindered by the lack of a microscopic understanding of DNA-mediated colloidal interactions. Here we use total internal reflection microscopy to measure in situ the interaction potential between DNA-coated colloids with nanometer resolution and the macroscopic melting behavior. The range and strength of the interaction are measured and linked to key material design parameters, including DNA sequence, polymer length, grafting density, and complementary fraction. We present a first-principles model that screens and combines existing theories into one coherent framework and quantitatively reproduces our experimental data without fitting parameters over a wide range of DNA ligand designs. Our theory identifies a subtle competition between DNA binding and steric repulsion and accurately predicts adhesion and melting at a molecular level. Combining experimental and theoretical results, our work provides a quantitative and predictive approach for guiding material design with DNA-nanotechnology and can be further extended to a diversity of colloidal and biological systems.
(© 2022. The Author(s).)

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies