Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Biomarker Assay Validation by Mass Spectrometry.

Tytuł:
Biomarker Assay Validation by Mass Spectrometry.
Autorzy:
Fernández-Metzler C; PharmaCadence Analytical Services, LLC, 1440 Industry Road, Hatfield, PA, 19940, USA. .
Ackermann B; Eli Lilly & Company, Lilly Corporate Center, Indianapolis, IN, 46285, USA.
Garofolo F; BRI - a Frontage Company, 8898 Heather St, Vancouver, British Columbia, V6P 3S8, Canada.
Arnold ME; Labcorp Drug Development, 221 Tulip Tree Drive, Westampton, NJ, 08060-5511, USA.
DeSilva B; Bristol-Myers Squibb Co., Route 206 & Province Line Road, Princeton, NJ, 08543, USA.
Gu H; Bristol-Myers Squibb Co., Route 206 & Province Line Road, Princeton, NJ, 08543, USA.
Laterza O; Merck and Co Inc., 90 E Scott Ave, Rahway, NJ, 07065, USA.
Mao Y; Boehringer-Ingelheim Pharmaceuticals, 900 Ridgebury Road, Ridgefield, CT, 06877, USA.
Rose M; Gossamer Bio Inc., 3013 Science Park Road, Suite 200, San Diego, CA, 92121, USA.
Vazvaei-Smith F; Merck and Co Inc., 770 Sumneytown Pike, West Point, PA, 19486, USA.
Steenwyk R; Pfizer-Retired, 8739 N Homestead Circle, Irons, MI, 49644, USA.
Źródło:
The AAPS journal [AAPS J] 2022 May 09; Vol. 24 (3), pp. 66. Date of Electronic Publication: 2022 May 09.
Typ publikacji:
Journal Article
Język:
English
Imprint Name(s):
Original Publication: Arlington, Va., USA : American Association of Pharmaceutical Scientists, [2004]-
MeSH Terms:
Biological Assay*/methods
Biomarkers/analysis ; Chromatography, Liquid/methods ; Mass Spectrometry/methods ; Reference Standards
References:
FDA, Food and Drug Administration (2001) Guidance for Industry: bioanalytical method validation. U.S. Department of Health and Human Services, 34 p.
Lee JW, Weiner RS, Sailstad JM, Bowsher RR, Knuth DW, O’Brien PJ, et al. Method validation and measurement of biomarkers in nonclinical and clinical samples in drug development: a conference report. Pharm Res. 2005;22(4):499–511. (PMID: 10.1007/s11095-005-2495-9)
Lee JW, Devanarayan V, Barrett YC, Weiner R, Allinson J, Fountain S, et al. Fit-for-purpose method development and validation for successful biomarker measurement. Pharm Res. 2006;23(2):312–28. (PMID: 10.1007/s11095-005-9045-3)
Lee JW, Hall M. Method validation of protein biomarkers in support of drug development or clinical diagnosis/prognosis. J Chromatogr B Analyt Technol Biomed Life Sci. 2009;877(13):1259–71. (PMID: 10.1016/j.jchromb.2008.11.022)
Houghton R, Horro Pita C, Ward IMR. Generic approach to validation of small-molecule LC-MS/MS biomarker assays. Bioanalysis. 2009;1(8):1365–74. (PMID: 10.4155/bio.09.139)
Hougton R, Gouty D, Allinson J, Green R, Losauro M, Lowes S, et al. Recommendations on biomarker bioanalytical method validation by GCC. Bioanalysis. 2012;4(20):2439–46. (PMID: 10.4155/bio.12.197)
Amaravadi L, Song A, Myler H, Thway T, Kirshner S, Devanarayan V, Ni GY, et al. WP in bioanalysis part3: focus on new technologies and biomarkers. Bioanalysis. 2015;7(24):3107–24. (PMID: 10.4155/bio.15.226)
Richards S, Amaravadi L, Pillutla R, Birnboeck H, Torri A, Cowan KJ, Papadimitriou A, et al. WP in bioanalysis part 3: focus on biomarker assay validation (BAV). Bioanalysis. 2016;8(23):2475–96. (PMID: 10.4155/bio-2016-4989)
Gupta S, Richards S, Amaravadi L, Piccoli S, Desilva B, Renuka P, Stevenson L, Mehta D, Carrasco-Triguero M, et al. WP in bioanalysis part 3: a global perspective on immunogenicity guidelines & biomarker assay performance. Bioanalysis. 2017;9(24):1967–96. (PMID: 10.4155/bio-2017-4974)
Stevenson L, Richards S, Pillutla R, Torri A, Kamerud J, Mehta D, Keller S, Purushothama S, et al. WP in bioanalysis part 3: focus on flow cytometry, gene therapy, cut points and key clarifications on BAV. Bioanalysis. 2018;10(24):1973–2001. (PMID: 10.4155/bio-2018-0287)
Neubert H, Olah T, Lee A, Fraser S, Dodge R, Laterza O, Szapacs M, Alley S, et al. WP in bioanalysis part 2: focus on immunogenicity assays by hybrid LBA / LCMS and regulatory feedback. Bioanalysis. 2018;10(23):1897–917. (PMID: 10.4155/bio-2018-0285)
Piccoli S, Metha D, Vitaliti A, Allinson J, Amur S, Eck S, Green C, Hedrick M, et al. WP in bioanalysis part 3: FDA immunogenicity guidance, gene therapy, critical reagents, biomarkers and flow cytometry validation. Bioanalysis. 2019;11(24):2207–44. (PMID: 10.4155/bio-2019-0271)
Neubert H, Alley S, Lee A, Jian W, Buonarati M, Edmison A, Garofolo F, Gorovits B, et al. WP in bioanalysis part 1: BMV of hybrid assays, acoustic MS, HRMS, data integrity, endogenous compounds, microsampling and microbiome. Bioanalysis. 2021;13(4):203–38. (PMID: 10.4155/bio-2020-0324)
Spitz S, Zhang Y, Fischer S, McGuire K, Sommer U, Amaravadi L, Bandukwala A, Eck S, et al. WP in bioanalysis part 2: BAV guidance, CLSI H62, biotherapeutics stability, parallelism testing. CyTOF and regulatory feedback Bioanalysis. 2021;13(5):295–361. (PMID: 33511867)
Draft guidance for industry on bioanalytical method validation - a notice by the Food and Drug Administration on 09/13/2013 - https://www.federalregister.gov/documents/2013/09/13/2013-22309/draft-guidance-for-industry-on-bioanalytical-method-validation-availability.
Booth B, Arnold ME, DeSilva B, Amaravadi L, Dudal S, Fluhler E, Gorovits B, Haidar SH, Kadavil J, Lowes S, Nicholson R, Rock M, Skelly M, Stevenson L, Subramaniam S, Russell Weiner EW. Workshop report: Crystal City V—quantitative bioanalytical method validation and implementation: the 2013 revised FDA guidance. AAPS J. 2015;17(2):277–88. (PMID: 10.1208/s12248-014-9696-2)
Arnold ME, Booth B, King L, Ray C. Workshop report: Crystal City VI—bioanalytical method validation for biomarkers. AAPS J 2016;18(6):1366–72. Available from: http://link.springer.com/10.1208/s12248-016-9946-6 .
FDA, Food and Drug Administration (2018) Guidance for industry bioanalytical method validation, (May):1–22. Available from: http://www.fda.gov/Drugs/GuidanceComplianceRegulatoryInformation/Guidances/default.htm.
ICH M10, Draft Bioanalytical Method Validation (2019). https://www.ich.org/fileadmin/PublicWeb Site/ICH products/Guidelines/Multidisciplinary/M10/M10EWGStep2DraftGuideline 2019 0226.pdf .
FDA (2014) Guidance for industry and FDA staff qualification process for drug development tools. Food Drug Adm Cent Drug Eval Res (January).
Piccoli S., Sauer JM., Ackermann B., Allinson J., Arnold M., Amur S., Aubrecht J., Baker A., Becker R., Buckman-Garner S. et al (2019) Points to consider document: scientific and regulatory considerations for the analytical validation of assays used in the qualification of biomarkers in biological matrices. Critical Path Institute (C-Path). https://c-path.org/wp-content/uploads/2019/06/EvidConsid-WhitePaper-AnalyticalSectionV20190621.pdf.
Chau CH, Rixe O, McLeod H, Figg WD. Validation of analytic methods for biomarkers used in drug development. Clin Cancer Res. 2008;14(19):5967–76. (PMID: 10.1158/1078-0432.CCR-07-4535)
Wu Y, Lee JW, Uy L, Abosaleem B, Gunn H, Ma M, et al. (2009) Tartrate-resistant acid phosphatase (TRACP 5b): a biomarker of bone resorption rate in support of drug development: modification, validation and application of the BoneTRAP® kit assay. J Pharm Biomed Anal 49(5):1203–12. Available from: https://www.sciencedirect.com/science/article/abs/pii/S0731708509001629 .
Cummings, J., Raynaud, F., Jones, L., Sugar, R., Dive, C. (2010) Fit-for-purpose biomarker method validation for application in clinical trials of anticancer drugs. Br J Cancer, 103:1313. Available from: https://doi.org/10.1038/sj.bjc.6605910 .
Valentin, M.-A., Ma, S., Zhao, A., Legay, F., Avrameas, A. (2011) Validation of immunoassay for protein biomarkers: bioanalytical study plan implementation to support pre-clinical and clinical studies. J Pharm Biomed Anal 55(5):869–77. Available from: https://www.sciencedirect.com/science/article/abs/pii/S0731708511001853 .
Lowes S, Ackermann BL. AAPS and US FDA Crystal City VI workshop on bioanalytical method validation for biomarkers. Bioanalysis. 2016;8(3):163–7. (PMID: 10.4155/bio.15.251)
Tu and Bennett. Parallelism experiments to evaluate matrix effects, selectivity and sensitivity in ligand binding assay method development: pros and cons. Bioanalysis. 2017;9(14):1107–22. (PMID: 10.4155/bio-2017-0084)
Smith, L.M., Kelleher, N.L., et al. (2013) Proteoform: a single term describing protein complexity. Nat methods 10(3):186-7. Available from: https://doi.org/10.1038/nmeth.2369 .
Sturgeon, C., Hill, R., Hortin, G.L., Thompson, D. (2010) Taking a new biomarker into routine use – a perspective from the routine clinical biochemistry laboratory. PROTEOMICS – Clin Appl 4(12):892–903. Available from: https://doi.org/10.1002/prca.201000073 .
Zhao, X., Qureshi, F., Eastman, P.S., Manning, W.C., Alexander, C., Robinson, W.H., et al. (2012) Pre-analytical effects of blood sampling and handling in quantitative immunoassays for rheumatoid arthritis. J Immunol Methods 378(1–2):72–80. Available from: https://www.sciencedirect.com/science/article/pii/S0022175912000427 .
EMA (2012) Guideline on bioananalytical method validation. Committee for Medicinal Products for Human Use (CHMP).
Duggan, J.X., Vazvaei, F., Jenkins, R. (2015) Bioanalytical method validation considerations for LC–MS/MS assays of therapeutic proteins. Bioanalysis 7(11):1389–95. Available from: https://doi.org/10.4155/bio.15.69 .
Cowan KJ, Amaravadi L, Cameron MJ, Fink D, Jani D, Kamat M, et al. Recommendations for selection and characterization of protein biomarker assay calibrator material. AAPS J. 2017;19(6):1550–63. (PMID: 10.1208/s12248-017-0146-9)
Kunz U, Goodman J, Loevgren U, Piironen T, Elsby K, Robinson P, et al. Addressing the challenges of biomarker calibration standards in ligand-binding assays: a European bioanalysis forum perspective. Bioanalysis. 2017;9(19):1493–508. (PMID: 10.4155/bio-2017-0141)
Jiang H, Zeng J, Titsch C, Voronin K, Akinsanya B, Luo L, et al. Fully validated LC-MS/MS assay for the simultaneous quantitation of coadministered therapeutic antibodies in cynomolgus monkey serum. Anal Chem. 2013;85(20):9859–67. (PMID: 10.1021/ac402420v)
Stevenson L, Garofolo F, DeSilva B, Dumont I, Martinez S, Rocci M, Amaravadi L, Brudny KM, Musuku A, Booth B, et al. WP in bioanalysis: ‘hybrid’ – the best of LBA and LCMS. Bioanalysis. 2013;5(23):2903–18. (PMID: 10.4155/bio.13.238)
King LE. Parallelism experiments in biomarker ligand-binding assays to assess immunological similarity. Bioanalysis. 2016;8(23):2387–91. (PMID: 10.4155/bio-2016-0245)
Guideline on Bioanalytical Method Validation in Pharmaceutical Development (25 July 2013, MHLW, Japan). Available from: http://www.nihs.go.jp/drug/BMV/250913_BMV-GL_E.pdf.
Gerszten, R.E., Accurso, F., Bernard, G.R., Caprioli, R.M., Klee, E.W., Klee, G.G., et al. (2008) Challenges in translating plasma proteomics from bench to bedside: update from the NHLBI clinical proteomics programs. Am J Physiol Lung Cell Mol Physiol 295(1):L16–22. Available from: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=18456800 .
Tuck, M.K., Chan, D.W., Chia, D., Godwin, A.K., Grizzle. W.E., Krueger, K.E., et al. (2009) Standard operating procedures for serum and plasma collection: early detection research network consensus statement standard operating procedure integration working group. J Proteome Res 8(1):113–7. Available from: https://doi.org/10.1021/pr800545q .
Hoofnagle AN, et al. Recommendations for the generation, quantification, storage, and handling of peptides used for mass spectrometry-based assays. Clin Chem. 2016;62(1):48–69. (PMID: 10.1373/clinchem.2015.250563)
Agrawal, L., Engel, K.B., Greytak, S.R., Moore, H.M. (2018) Understanding preanalytical variables and their effects on clinical biomarkers of oncology and immunotherapy. Semin Cancer Biol 52:26–38. Available from: https://www.sciencedirect.com/science/article/pii/S1044579X17302481 .
Yi, J., Warunek, D., Craft, D. (2015) Degradation and stabilization of peptide hormones in human blood specimens. PLoS One 10(7):e0134427. Available from: https://doi.org/10.1371/journal.pone.0134427 .
Gupta, V., Davancaze, T., Good, J., Kalia, N., Anderson, M., Wallin, J.J., et al. (2016) Bioanalytical qualification of clinical biomarker assays in plasma using a novel multi-analyte simple PlexTM platform. Bioanalysis 8(23):2415–28. Available from: https://doi.org/10.4155/bio-2016-0196 .
Ayache, S., Panelli, M., Marincola, F.M., Stroncek, D.F. (2006) Effects of storage time and exogenous protease inhibitors on plasma protein levels. Am J Clin Pathol 126(2):174–84. Available from: https://doi.org/10.1309/3WM7XJ7RD8BCLNKX .
Oe, T., Ackermann, B.L., Inoue, K., Berna, M.J., Garner, C.O., Gelfanova, V., et al. (2006) Quantitative analysis of amyloid β peptides in cerebrospinal fluid of Alzheimer’s disease patients by immunoaffinity purification and stable isotope dilution liquid chromatography/negative electrospray ionization tandem mass spectrometry. Rapid Commun mass Spectrom 20(24):3723–35. Available from: https://doi.org/10.1002/rcm.2787 .
Shuford, C.M., Walters, J.J., Holland, P.M., Sreenivasan, U., Askari, N., Ray K, et al. (2017) Absolute protein quantification by mass spectrometry: not as simple as advertised. Anal Chem 89(14):7406–15. Available from: https://doi.org/10.1021/acs.analchem.7b00858 .
van den Broek I, Smit NPM, Romijn FPHTM, van der Laarse A, Deelder AM, van der Burgt YEM, Cobbaert CM. Evaluation of interspecimen trypsin digestion efficiency prior to multiple reaction monitoring-based absolute protein quantification with native protein calibrators. J Proteome Res. 2013;12(12):5760–74. https://doi.org/10.1021/pr400763d . (PMID: 10.1021/pr400763d24168082)
Lowenthal MS, Liang Y, Phinney KW, Stein SE. Quantitative bottom-up proteomics depends on digestion conditions. Anal Chem. 2014;86(1):551–8. https://doi.org/10.1021/ac4027274 . (PMID: 10.1021/ac402727424294946)
Nouri-Nigjeh E, Zhang M, Ji T, Yu H, An B, Duan X, Balthasar J, Johnson RW, Qu J. Effects of calibration approaches on the accuracy for LC−MS targeted quantification of therapeutic protein. Anal Chem. 2014;86(7):3575–84. https://doi.org/10.1021/ac5001477 . (PMID: 10.1021/ac5001477246115503982980)
Scott KB, Turko IV, Phinney KW. Quantitative performance of internal standard platforms for absolute protein quantification using multiple reaction monitoring mass spectrometry. Anal Chem. 2015;87(8):4429–35. https://doi.org/10.1021/acs.analchem.5b00331 . (PMID: 10.1021/acs.analchem.5b0033125812027)
Benesova E, Vidova V, Spacil Z. A comparative study of synthetic winged peptides for absolute protein quantification. Sci Rep. 2021;11(1):10880. https://doi.org/10.1038/s41598-021-90087-9 . (PMID: 10.1038/s41598-021-90087-9340353408149832)
Beynon RJ, Doherty MK, Pratt JM, Gaskell SJ. Multiplexed absolute quantification in proteomics using artificial QCAT proteins of concatenated signature peptides. Nat Methods. 2005;2(8):587–9. https://doi.org/10.1038/nmeth774 . (PMID: 10.1038/nmeth77416094383)
Brun V, Dupuis A, Adrait A, Marcellin M, Thomas D, Court M, Vandenesch F, Garin J. Isotope-labeled protein standards: toward absolute quantitative proteomics. Mol Cell Proteomics. 2007;6(12):2139–49. https://doi.org/10.1074/mcp.M700163-MCP200 . (PMID: 10.1074/mcp.M700163-MCP20017848587)
Brun V, Masselon C, Garin J, Dupuis A. Isotope dilution strategies for absolute quantitative proteomics. J Proteome. 2009;72(5):740–9. https://doi.org/10.1016/j.jprot.2009.03.007 . (PMID: 10.1016/j.jprot.2009.03.007)
Reddy PT, Jaruga P, Nelson BC, Lowenthal MS, Jemth A-S, Loseva O, Coskun E, Helleday T, Dizdaroglu M. Production, purification, and characterization of N-labeled DNA repair proteins as internal standards for mass spectrometric measurements. Methods Enzymol. 2016;566:305–32. https://doi.org/10.1016/bs.mie.2015.06.044 . (PMID: 10.1016/bs.mie.2015.06.04426791985)
Bronsema KJ, Bischoff R, van de Merbel NC. Internal standards in the quantitative determination of protein biopharmaceuticals using liquid chromatography coupled to mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci. 2012;893-894:1–14. https://doi.org/10.1016/j.jchromb.2012.02.021 . (PMID: 10.1016/j.jchromb.2012.02.02122426285)
Grant RP, Hoofnagle AN. From lost in translation to paradise found: enabling protein biomarker method transfer by mass spectrometry. Clin Chem. 2014;60(7):941–4. (PMID: 10.1373/clinchem.2014.224840)
Zhao, Y., Liu, G., Kwok, S., Jones, B.R., Liu, J., Marchisin, D., et al. (2017) Highly selective and sensitive measurement of active forms of FGF21 using novel immunocapture enrichment with LC–MS/MS. Bioanalysis 10(1):23–33. Available from: https://doi.org/10.4155/bio-2017-0208 .
Jones, B.R., Schultz, G.A., Eckstein, J.A., Ackermann, B.L. (2012) Surrogate matrix and surrogate analyte approaches for definitive quantitation of endogenous biomolecules. Bioanalysis 4(19):2343–56. Available from: https://doi.org/10.4155/bio.12.200 .
Song A, Lee A, Garofolo F, Kaur S, Duggan J, Evans C, Palandra J, Di Donato L, Xu K, Bauer R, et al. WP in bioanalysis part 2: focus on biomarker assay validation (BAV) hybrid LBA/LCMS and input from regulatory agencies. Bioanalysis. 2016;8(23):2457–74. (PMID: 10.4155/bio-2016-4988)
Cox JM, Butler JP, Lutzke BS, Jones BA, Buckholz JE, Biondolillo R, et al. (2015) A validated LC–MS/MS method for neurotransmitter metabolite analysis in human cerebrospinal fluid using benzoyl chloride derivatization. Bioanalysis 7(19):2461–75. Available from: https://doi.org/10.4155/bio.15.170 .
Lame, M.E., Chambers, E.E., Blatnik, M. (2011) Quantitation of amyloid beta peptides Aβ1–38, Aβ1–40, and Aβ1–42 in human cerebrospinal fluid by ultra-performance liquid chromatography–tandem mass spectrometry. Anal Biochem 419(2):133–9. Available from: https://www.sciencedirect.com/science/article/pii/S0003269711005306 .
Jian, W., Edom, R., Weng, N., Zannikos, P., Zhang, Z., Wang, H. (2010) Validation and application of an LC–MS/MS method for quantitation of three fatty acid ethanolamides as biomarkers for fatty acid hydrolase inhibition in human plasma. J Chromatogr B. [cited 2018 Dec 11];878(20):1687–99. Available from: https://www.sciencedirect.com/science/article/pii/S1570023210002734 .
Ongay, S., Hendriks, G., Hermans, J., van den Berge, M., ten Hacken, N.H.T., van de Merbel, N.C., et al. (2014) Quantification of free and total desmosine and isodesmosine in human urine by liquid chromatography tandem mass spectrometry: a comparison of the surrogate-analyte and the surrogate-matrix approach for quantitation. J Chromatogr A Jan 24 [cited 2018];1326:13–9. Available from: https://www.sciencedirect.com/science/article/pii/S002196731301916X.
Kinoshita, K., Jingu, S., Yamaguchi, J. (2013) A surrogate analyte method to determine d-serine in mouse brain using liquid chromatography–tandem mass spectrometry. Anal Biochem. [cited 2018 Dec 11];432(2):124–30. Available from: https://www.sciencedirect.com/science/article/pii/S0003269712004915.
Liu, L., Cui, Z., Deng, Y., Dean, B., Hop, C.E.C.A., Liang, X. (2016) Surrogate analyte approach for quantitation of endogenous NAD+ in human acidified blood samples using liquid chromatography coupled with electrospray ionization tandem mass spectrometry. J Chromatogr B [cited 2018];1011:69–76. Available from: https://www.sciencedirect.com/science/article/pii/S1570023215303652.
Li, W., Cohen, L.H. (2003) Quantitation of endogenous analytes in biofluid without a true blank matrix. Anal Chem 75(21):5854–9. Available from: https://doi.org/10.1021/ac034505u .
Jemal, M., Schuster, A., Whigan, D.B. (2003) Liquid chromatography/tandem mass spectrometry methods for quantitation of mevalonic acid in human plasma and urine: method validation, demonstration of using a surrogate analyte, and demonstration of unacceptable matrix effect in spite of use of a stable. Rapid Commun mass Spectrom 17(15):1723–34. Available from: https://doi.org/10.1002/rcm.1112 .
Yang E, Welink J, Cape S, Woolf E, Sydor J, James C, Goykhman D, Arnold M, Addock N, Bauer R, et al. WP in bioanalysis part 1: focus on biomarker assay validation (BAV). Bioanalysis. 2016;8(22):2363–78. (PMID: 10.4155/bio-2016-4992)
Metzler, G., King, R.C., Fernández-Metzler, C., Crathern, S. (2019) Reducing the need for surrogate matrix or surrogate analyte in biomarker assays, 67TH ASMS conference on mass spectrometry and allied topics, Atlanta, Georgia, June 2–6.
Jenkins R, Duggan JX, Aubry A-F, Zeng J, Lee JW, Cojocaru L, Dufield D., Garofolo F., Kaur S., A. G Schultz, et al. (2015) Recommendations for validation of LC-MS/MS bioanalytical methods for protein biotherapeutics. AAPS J 17(1):1–16. Available from: http://link.springer.com/10.1208/s12248-014-9685-5.
Huber-Lang, M., Sarma, J.V., Zetoune, F.S., Rittirsch, D., Neff, T.A., McGuire, S.R. et al. (2006) Generation of C5a in the absence of C3: a new complement activation pathway. Nat Med 12:682. Available from: https://doi.org/10.1038/nm1419 .
Yu, Z., Kastenmüller, G., He, Y., Belcredi, P., Möller, G., Prehn, C., et al. (2011) Differences between human plasma and serum metabolite profiles. PLoS One 6(7):e21230. Available from: https://doi.org/10.1371/journal.pone.0021230 .
Zhou W, Yang S, Wang PG. Matrix effects and application of matrix effect factor. Bioanalysis. 2017;9(23):1839–44. (PMID: 10.4155/bio-2017-0214)
Van Bruijnsvoort M, Meijer J, Van Den Beld C. The application of control charts in regulated bioanalysis for monitoring long-term reproducibility. Bioanalysis. 2017;9(24):1955–65. (PMID: 10.4155/bio-2017-0163)
Lowes S, LeLacheur R, Shoup R, Garofolo F, Dumont I, Martinez S, Zimmer J, Caturla MC, Couerbe P, Awaiye K, Fatmi S, et al. Recommendations on incurred sample stability (ISS) by GCC. Bioanalysis. 2014;6(18):2385–90. (PMID: 10.4155/bio.14.155)
DeSilva B, Garofolo F, Rocci M, Martinez S, Dumont I, Landry F, Dicaire C, Szekely-Klepser G, Weiner R, Arnold M, Bansal S, et al. WP in bioanalysis: alignment of multiple guidelines. Bioanalysis. 2012;4(18):2213–26. (PMID: 10.4155/bio.12.205)
Dijksman J, Timmerman P, Abbott R, Barroso B, Kloeppel MB, Companjen A, et al. Conference report: less is more, defining modern bioanalysis. Bioanalysis. 2012;4(6):633–42. (PMID: 10.4155/bio.12.36)
Yadav, M.S., Shrivastav, P.S., de Boer, T., Wieling, J., Singhal, P. (2013) Current understanding of bioanalytical assay reproducibility: incurred sample reanalysis, incurred sample stability, and incurred sample accuracy. In John Wiley & Sons, Inc.; p. 47–64.
Rocci M, Lowes S, Shoup R, Garofolo F, Farmen R, Zhang T, Allinson J, Gouty D, Hayes R, Nicholson R, Houghton R, et al. 7th GCC insights: incurred samples use; fit-for-purpose validation, solution stability, electronic laboratory notebook and hyperlipidemic matrix testing. Bioanalysis. 2014;6(20):2713–20. (PMID: 10.4155/bio.14.231)
Andisik M, DeStefano L, Stefan C, Gathani M, Laurino K, Lai VC, et al. Effects of blood processing and sample storage on the stability of biotherapeutics and anti-drug antibodies. Bioanalysis. 2015;7(11):1325–35. (PMID: 10.4155/bio.15.66)
Neubert H, Song A, Lee A, Wei C, Duggan J, Xu K, Woolf E, Evans C, Palandra J, Laterza O, et al. WP in bioanalysis part 2: rise of hybrid LBA/LCMS immunogenicity assays. Bioanalysis. 2017;9(23):1895–912. (PMID: 10.4155/bio-2017-4973)
Barelli, S., Crettaz, D., Thadikkaran, L., Rubin, O., Tissot, J-D (2007) Plasma/serum proteomics: pre-analytical issues. Expert Rev Proteomics 4(3):363–70. Available from: https://doi.org/10.1586/14789450.4.3.363 .
Blair IA, Ciccimaro E. Stable-isotope dilution LC – MS for quantitative biomarker ana ­ lysis. Bioanalysis. 2010;2:311–41. (PMID: 10.4155/bio.09.185)
Matuszewski BK, Constanzer ML, Chavez-Eng CM. Strategies for the assessment of matrix effect in quantitative bioanalytical methods based on HPLC-MS/MS. Anal Chem. 2003;75(13):3019–30. https://doi.org/10.1021/ac020361s . (PMID: 10.1021/ac020361s12964746)
Guideline on Bioanalytical method validation, European Medicines Agency, 21 July 2011, EMEA/CHMP/EWMP/EWP/192217/2009 Rev. 1 Corr. 2, Committee for Medicinal Products for Human Use (CHMP).
Panuwet, P., Hunter, R.E., D’Souza, P.E., Chen, X., Radford, S.A., Cohen, J.R., et al. (2016) Biological matrix effects in quantitative tandem mass spectrometry-based analytical methods: advancing biomonitoring. Crit Rev Anal Chem 46(2):93–105. Available from: https://doi.org/10.1080/10408347.2014.980775 .
Welink J, Xu Y, Yang E, Wilson A, Henderson N, Luo L, Fraser S, Kavita U, Musuku A, et al. WP in bioanalysis part 1: a global bioanalytical community perspective on last decade of incurred samples reanalysis (ISR). Bioanalysis. 2018;10(22):1781–801. (PMID: 10.4155/bio-2018-0268)
Jenkins, R.G. (2016) Accuracy: a potential quandary in regulated bioanalysis of ‘endogenous’ analytes. Bioanalysis 8(23):2393–7. Available from: http://www.future-science.com/doi/10.4155/bio-2016-0247 .
Stevenson, L.F., Purushothama, S. (2014) Parallelism: considerations for the development, validation and implementation of PK and biomarker ligand-binding assays. Bioanalysis 6(2):185–98. Available from: https://doi.org/10.4155/bio.13.292 .
Xiao D, Hiing K, Ling J, Custodio J, Majeed SR, Tarnowski T. Quantitation of intracellular triphosphate metabolites of antiretroviral agents in peripheral blood mononuclear cells (PBMCs) and corresponding cell count determinations: review of current methods and challenges. Expert Opin Drug Metab Toxicol. 2018;14(8):781–802. (PMID: 10.1080/17425255.2018.1500552)
Weng N, Jian W. Targeted biomarker quantitation by LC-MS: John Wiley & Sons; 2017. (PMID: 10.1002/9781119413073)
Wang, J., Lee, J., Burns, D., Doherty, D., Brunner, L., Peterson, M., et al. (2009) “Fit-for-purpose” method validation and application of a biomarker (C-terminal telopeptides of type 1 collagen) in denosumab clinical studies. AAPS J 11(2):385–94. Available from: http://www.springerlink.com/index/10.1208/s12248-009-9115-2 .
Contributed Indexing:
Keywords: LC-MS/MS; assay validation; biomarkers; context of use; fit-for-purpose; regulated bioanalysis
Substance Nomenclature:
0 (Biomarkers)
Entry Date(s):
Date Created: 20220509 Date Completed: 20220511 Latest Revision: 20220511
Update Code:
20240105
DOI:
10.1208/s12248-022-00707-z
PMID:
35534647
Czasopismo naukowe
Decades of discussion and publication have gone into the guidance from the scientific community and the regulatory agencies on the use and validation of pharmacokinetic and toxicokinetic assays by chromatographic and ligand binding assays for the measurement of drugs and metabolites. These assay validations are well described in the FDA Guidance on Bioanalytical Methods Validation (BMV, 2018). While the BMV included biomarker assay validation, the focus was on understanding the challenges posed in validating biomarker assays and the importance of having reliable biomarker assays when used for regulatory submissions, rather than definition of the appropriate experiments to be performed. Different from PK bioanalysis, analysis of biomarkers can be challenging due to the presence of target analyte(s) in the control matrices used for calibrator and quality control sample preparation, and greater difficulty in procuring appropriate reference standards representative of the endogenous molecule. Several papers have been published offering recommendations for biomarker assay validation. The situational nature of biomarker applications necessitates fit-for-purpose (FFP) assay validation. A unifying theme for FFP analysis is that method validation requirements be consistent with the proposed context of use (COU) for any given biomarker. This communication provides specific recommendations for biomarker assay validation (BAV) by LC-MS, for both small and large molecule biomarkers. The consensus recommendations include creation of a validation plan that contains definition of the COU of the assay, use of the PK assay validation elements that support the COU, and definition of assay validation elements adapted to fit biomarker assays and the acceptance criteria for both.
(© 2022. The Author(s).)

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies