Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Delineating the RAS Conformational Landscape.

Tytuł:
Delineating the RAS Conformational Landscape.
Autorzy:
Parker MI; Program in Molecular Therapeutics, Fox Chase Cancer Center, Philadelphia, Pennsylvania.; Molecular & Cell Biology & Genetics (MCBG) Program, Drexel University College of Medicine, Philadelphia, Pennsylvania.
Meyer JE; Program in Molecular Therapeutics, Fox Chase Cancer Center, Philadelphia, Pennsylvania.; Department of Radiation Oncology, Fox Chase Cancer Center, Philadelphia, Pennsylvania.
Golemis EA; Program in Molecular Therapeutics, Fox Chase Cancer Center, Philadelphia, Pennsylvania.; Department of Cancer and Cell Biology, Lewis Katz School of Medicine, Philadelphia, Pennsylvania.
Dunbrack RL; Program in Molecular Therapeutics, Fox Chase Cancer Center, Philadelphia, Pennsylvania.
Źródło:
Cancer research [Cancer Res] 2022 Jul 05; Vol. 82 (13), pp. 2485-2498.
Typ publikacji:
Journal Article; Research Support, Non-U.S. Gov't; Research Support, N.I.H., Extramural
Język:
English
Imprint Name(s):
Publication: Baltimore, Md. : American Association for Cancer Research
Original Publication: Chicago [etc.]
MeSH Terms:
Proto-Oncogene Proteins p21(ras)*/genetics
Proto-Oncogene Proteins p21(ras)*/metabolism
ras Proteins*/genetics
ras Proteins*/metabolism
Guanosine Triphosphate/metabolism ; Humans ; Mutation ; Protein Conformation ; Protein Isoforms/metabolism
References:
Nucleic Acids Res. 2017 Jul 3;45(W1):W337-W343. (PMID: 28472372)
Nat Methods. 2022 Jun;19(6):679-682. (PMID: 35637307)
Sci Rep. 2016 May 16;6:25931. (PMID: 27180801)
Structure. 2018 Jun 5;26(6):810-820.e4. (PMID: 29706533)
Proc Natl Acad Sci U S A. 2019 Apr 2;116(14):6818-6827. (PMID: 30867294)
J Phys Chem Lett. 2018 Mar 15;9(6):1312-1317. (PMID: 29488771)
Chem Rev. 2016 Jun 8;116(11):6607-65. (PMID: 26815308)
PLoS Comput Biol. 2019 Mar 7;15(3):e1006844. (PMID: 30845191)
Cancer Discov. 2019 Jun;9(6):738-755. (PMID: 30952657)
J Biol Chem. 2019 Sep 20;294(38):13964-13972. (PMID: 31341022)
J Mol Biol. 2011 Feb 18;406(2):228-56. (PMID: 21035459)
Proc Natl Acad Sci U S A. 2019 Oct 29;116(44):22122-22131. (PMID: 31611389)
PLoS One. 2021 Jul 6;16(7):e0253411. (PMID: 34228733)
Sci Rep. 2019 Jul 19;9(1):10512. (PMID: 31324887)
Proc Natl Acad Sci U S A. 2010 Mar 16;107(11):4931-6. (PMID: 20194776)
J Chem Inf Model. 2017 Oct 23;57(10):2437-2447. (PMID: 28981269)
Mol Cancer Res. 2015 Sep;13(9):1325-35. (PMID: 26037647)
Nat Commun. 2018 Aug 9;9(1):3169. (PMID: 30093669)
Nat Rev Drug Discov. 2016 Nov;15(11):771-785. (PMID: 27469033)
FEBS Lett. 2004 Dec 17;578(3):305-10. (PMID: 15589837)
Angew Chem Int Ed Engl. 2013 Dec 23;52(52):14242-6. (PMID: 24218090)
EMBO J. 1990 Aug;9(8):2351-9. (PMID: 2196171)
Science. 1990 Feb 23;247(4945):939-45. (PMID: 2406906)
Science. 1997 Jul 18;277(5324):333-8. (PMID: 9219684)
Elife. 2018 Jul 10;7:. (PMID: 29989546)
EMBO J. 2007 Jul 11;26(13):3250-9. (PMID: 17568777)
Nucleic Acids Res. 2014 Jan;42(Database issue):D267-72. (PMID: 24243844)
Biochemistry. 2018 Jan 23;57(3):324-333. (PMID: 29235861)
Proc Natl Acad Sci U S A. 2019 Aug 6;116(32):15823-15829. (PMID: 31332011)
Proc Natl Acad Sci U S A. 2019 Feb 12;116(7):2545-2550. (PMID: 30683716)
BMC Bioinformatics. 2009 Jun 02;10:168. (PMID: 19486540)
Proc Natl Acad Sci U S A. 2014 Mar 4;111(9):3401-6. (PMID: 24550516)
J Med Chem. 2018 Jul 26;61(14):6002-6017. (PMID: 29856609)
Cancer Discov. 2022 Apr 1;12(4):924-937. (PMID: 35046095)
Proc Natl Acad Sci U S A. 2012 Apr 3;109(14):5299-304. (PMID: 22431598)
PLoS Comput Biol. 2018 Nov 9;14(11):e1006364. (PMID: 30412578)
J Mol Biol. 1963 Jul;7:95-9. (PMID: 13990617)
Enzymes. 2013;33 Pt A:41-67. (PMID: 25033800)
J Biol Chem. 2010 Jul 16;285(29):22696-705. (PMID: 20479006)
Cell Rep. 2019 Aug 6;28(6):1538-1550.e7. (PMID: 31390567)
Nat Chem Biol. 2017 Jan;13(1):62-68. (PMID: 27820802)
Nat Commun. 2020 Feb 5;11(1):711. (PMID: 32024829)
J Biol Chem. 2011 Feb 4;286(5):3323-31. (PMID: 21098031)
Future Med Chem. 2020 Nov;12(21):1911-1923. (PMID: 32779487)
Nature. 2021 Aug;596(7873):583-589. (PMID: 34265844)
Cell Chem Biol. 2017 Aug 17;24(8):1005-1016.e3. (PMID: 28781124)
Angew Chem Int Ed Engl. 2012 Jun 18;51(25):6140-3. (PMID: 22566140)
Nat Commun. 2021 May 11;12(1):2656. (PMID: 33976200)
Nat Commun. 2021 Jun 30;12(1):4045. (PMID: 34193876)
Cell. 2003 Mar 7;112(5):685-95. (PMID: 12628188)
Structure. 2007 Dec;15(12):1618-29. (PMID: 18073111)
Nat Commun. 2019 Jun 13;10(1):2607. (PMID: 31197133)
Chem Sci. 2022 Jan 13;13(7):2001-2010. (PMID: 35308861)
Proteins. 2005 Mar 1;58(4):893-904. (PMID: 15651050)
Nat Rev Drug Discov. 2021 Oct;20(10):725-727. (PMID: 34522032)
MAbs. 2020 Jan-Dec;12(1):1840005. (PMID: 33180672)
Biochemistry. 2012 Aug 7;51(31):6114-26. (PMID: 22845804)
Cell. 2017 Jun 29;170(1):17-33. (PMID: 28666118)
Proc Natl Acad Sci U S A. 2001 Apr 24;98(9):4944-9. (PMID: 11320243)
Front Pharmacol. 2020 Mar 13;11:280. (PMID: 32231571)
Angew Chem Int Ed Engl. 2020 Jun 26;59(27):11037-11045. (PMID: 32227412)
Structure. 2008 Jun;16(6):885-96. (PMID: 18547521)
Bioinformatics. 2003 Aug 12;19(12):1589-91. (PMID: 12912846)
Cell Chem Biol. 2017 Dec 21;24(12):1455-1466.e14. (PMID: 29033317)
Nat Commun. 2017 Jul 14;8:16111. (PMID: 28706291)
Nature. 2013 Nov 28;503(7477):548-51. (PMID: 24256730)
Proc Natl Acad Sci U S A. 2013 Mar 19;110(12):4574-9. (PMID: 23487764)
Nature. 1998 Jul 23;394(6691):337-43. (PMID: 9690470)
FEBS Lett. 2012 Jun 12;586(12):1715-8. (PMID: 22584058)
Cancer Res. 2020 Jul 15;80(14):2969-2974. (PMID: 32209560)
Grant Information:
F30 GM142263 United States GM NIGMS NIH HHS; R35 GM122517 United States GM NIGMS NIH HHS; P30 CA006927 United States CA NCI NIH HHS
Substance Nomenclature:
0 (Protein Isoforms)
86-01-1 (Guanosine Triphosphate)
EC 3.6.5.2 (Proto-Oncogene Proteins p21(ras))
EC 3.6.5.2 (ras Proteins)
Entry Date(s):
Date Created: 20220510 Date Completed: 20220706 Latest Revision: 20221025
Update Code:
20240105
PubMed Central ID:
PMC9256797
DOI:
10.1158/0008-5472.CAN-22-0804
PMID:
35536216
Czasopismo naukowe
Mutations in RAS isoforms (KRAS, NRAS, and HRAS) are among the most frequent oncogenic alterations in many cancers, making these proteins high priority therapeutic targets. Effectively targeting RAS isoforms requires an exact understanding of their active, inactive, and druggable conformations. However, there is no structural catalog of RAS conformations to guide therapeutic targeting or examining the structural impact of RAS mutations. Here we present an expanded classification of RAS conformations based on analyses of the catalytic switch 1 (SW1) and switch 2 (SW2) loops. From 721 human KRAS, NRAS, and HRAS structures available in the Protein Data Bank (206 RAS-protein cocomplexes, 190 inhibitor-bound, and 325 unbound, including 204 WT and 517 mutated structures), we created a broad conformational classification based on the spatial positions of Y32 in SW1 and Y71 in SW2. Clustering all well-modeled SW1 and SW2 loops using a density-based machine learning algorithm defined additional conformational subsets, some previously undescribed. Three SW1 conformations and nine SW2 conformations were identified, each associated with different nucleotide states (GTP-bound, nucleotide-free, and GDP-bound) and specific bound proteins or inhibitor sites. The GTP-bound SW1 conformation could be further subdivided on the basis of the hydrogen bond type made between Y32 and the GTP γ-phosphate. Further analysis clarified the catalytic impact of G12D and G12V mutations and the inhibitor chemistries that bind to each druggable RAS conformation. Overall, this study has expanded our understanding of RAS structural biology, which could facilitate future RAS drug discovery.
Significance: Analysis of >700 RAS structures helps define an expanded landscape of active, inactive, and druggable RAS conformations, the structural impact of common RAS mutations, and previously uncharacterized RAS inhibitor-binding modes.
(©2022 The Authors; Published by the American Association for Cancer Research.)

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies