Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Fundamental immune-oncogenicity trade-offs define driver mutation fitness.

Tytuł:
Fundamental immune-oncogenicity trade-offs define driver mutation fitness.
Autorzy:
Hoyos D; Computational Oncology, Department of Epidemiology & Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
Zappasodi R; Swim Across America Laboratory and Ludwig Collaborative, Immunology Program, Parker Institute for Cancer Immunotherapy, Memorial Sloan Kettering Cancer Center, New York, NY, USA. .; Department of Medicine, Weill Cornell Medical College, New York, NY, USA. .; Parker Institute for Cancer Immunotherapy, Memorial Sloan Kettering Cancer Center, New York, NY, USA. .; Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences, New York, NY, USA. .
Schulze I; Swim Across America Laboratory and Ludwig Collaborative, Immunology Program, Parker Institute for Cancer Immunotherapy, Memorial Sloan Kettering Cancer Center, New York, NY, USA.; Parker Institute for Cancer Immunotherapy, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
Sethna Z; Computational Oncology, Department of Epidemiology & Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA.; Hepatopancreatobiliary Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA.; Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
de Andrade KC; Division of Cancer Epidemiology and Genetics, Clinical Genetics Branch, National Cancer Institute, National Institutes of Health, Rockville, MD, USA.
Bajorin DF; Department of Medicine, Weill Cornell Medical College, New York, NY, USA.; Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
Bandlamudi C; Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA.; Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
Callahan MK; Department of Medicine, Weill Cornell Medical College, New York, NY, USA.; Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
Funt SA; Department of Medicine, Weill Cornell Medical College, New York, NY, USA.; Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
Hadrup SR; Experimental and Translational Immunology, Health Technology, Technical University of Denmark, Lyngby, Denmark.
Holm JS; Experimental and Translational Immunology, Health Technology, Technical University of Denmark, Lyngby, Denmark.
Rosenberg JE; Department of Medicine, Weill Cornell Medical College, New York, NY, USA.; Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
Shah SP; Computational Oncology, Department of Epidemiology & Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA.; Physiology, Biophysics & Systems Biology, Weill Cornell Medicine, Weill Cornell Medical College, New York, NY, USA.
Vázquez-García I; Computational Oncology, Department of Epidemiology & Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
Weigelt B; Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
Wu M; Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
Zamarin D; Swim Across America Laboratory and Ludwig Collaborative, Immunology Program, Parker Institute for Cancer Immunotherapy, Memorial Sloan Kettering Cancer Center, New York, NY, USA.; Department of Medicine, Weill Cornell Medical College, New York, NY, USA.; Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
Campitelli LF; Adaptive Biotechnologies, Seattle, WA, USA.
Osborne EJ; Adaptive Biotechnologies, Seattle, WA, USA.
Klinger M; Adaptive Biotechnologies, Seattle, WA, USA.
Robins HS; Adaptive Biotechnologies, Seattle, WA, USA.
Khincha PP; Division of Cancer Epidemiology and Genetics, Clinical Genetics Branch, National Cancer Institute, National Institutes of Health, Rockville, MD, USA.
Savage SA; Division of Cancer Epidemiology and Genetics, Clinical Genetics Branch, National Cancer Institute, National Institutes of Health, Rockville, MD, USA.
Balachandran VP; Department of Medicine, Weill Cornell Medical College, New York, NY, USA.; Parker Institute for Cancer Immunotherapy, Memorial Sloan Kettering Cancer Center, New York, NY, USA.; Hepatopancreatobiliary Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA.; Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA.; David M. Rubenstein Center for Pancreatic Cancer Research, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
Wolchok JD; Swim Across America Laboratory and Ludwig Collaborative, Immunology Program, Parker Institute for Cancer Immunotherapy, Memorial Sloan Kettering Cancer Center, New York, NY, USA.; Department of Medicine, Weill Cornell Medical College, New York, NY, USA.; Parker Institute for Cancer Immunotherapy, Memorial Sloan Kettering Cancer Center, New York, NY, USA.; Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
Hellmann MD; Department of Medicine, Weill Cornell Medical College, New York, NY, USA.; Parker Institute for Cancer Immunotherapy, Memorial Sloan Kettering Cancer Center, New York, NY, USA.; Thoracic Oncology Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
Merghoub T; Swim Across America Laboratory and Ludwig Collaborative, Immunology Program, Parker Institute for Cancer Immunotherapy, Memorial Sloan Kettering Cancer Center, New York, NY, USA. .; Department of Medicine, Weill Cornell Medical College, New York, NY, USA. .; Parker Institute for Cancer Immunotherapy, Memorial Sloan Kettering Cancer Center, New York, NY, USA. .; Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA. .
Levine AJ; Simons Center for Systems Biology, Institute for Advanced Study, Princeton, NJ, USA.
Łuksza M; Department of Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
Greenbaum BD; Computational Oncology, Department of Epidemiology & Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA. .; Physiology, Biophysics & Systems Biology, Weill Cornell Medicine, Weill Cornell Medical College, New York, NY, USA. .
Źródło:
Nature [Nature] 2022 Jun; Vol. 606 (7912), pp. 172-179. Date of Electronic Publication: 2022 May 11.
Typ publikacji:
Journal Article
Język:
English
Imprint Name(s):
Publication: Basingstoke : Nature Publishing Group
Original Publication: London, Macmillan Journals ltd.
MeSH Terms:
Carcinogenesis*/genetics
Carcinogenesis*/immunology
Evolution, Molecular*
Lung Neoplasms*/genetics
Lung Neoplasms*/therapy
Mutation*/genetics
Datasets as Topic ; Genes, p53 ; Genetic Fitness ; Genomics ; Healthy Volunteers ; Humans ; Immunotherapy ; Mutation, Missense ; Reproducibility of Results
References:
Martínez-Jiménez, F. et al. A compendium of mutational cancer driver genes. Nat. Rev. Cancer 20, 555–572 (2020). (PMID: 10.1038/s41568-020-0290-x)
Giacomelli, A. O. et al. Mutational processes shape the landscape of TP53 mutations in human cancer. Nat. Genet. 50, 1381–1387 (2018). (PMID: 10.1038/s41588-018-0204-y)
Baugh, E. H., Ke, H., Levine, A. J., Bonneau, R. A. & Chan, C. S. Why are there hotspot mutations in the TP53 gene in human cancers? Cell Death Differ. 25, 154–160 (2018). (PMID: 10.1038/cdd.2017.180)
Petitjean, A. et al. Impact of mutant p53 functional properties on TP53 mutation patterns and tumor phenotype: lessons from recent developments in the IARC TP53 database. Hum. Mutat. 28, 622–629 (2007). (PMID: 10.1002/humu.20495)
Kato, S. et al. Understanding the function–structure and function–mutation relationships of p53 tumor suppressor protein by high-resolution missense mutation analysis. Proc. Natl Acad. Sci. USA 100, 8424–8429 (2003). (PMID: 10.1073/pnas.1431692100)
Kotler, E. et al. A systematic p53 mutation library links differential functional impact to cancer mutation pattern and evolutionary conservation. Mol. Cell 71, 178–190 (2018). (PMID: 10.1016/j.molcel.2018.06.012)
Marty, R. et al. MHC-I genotype restricts the oncogenic mutational landscape. Cell 171, 1272–1283 (2017). (PMID: 10.1016/j.cell.2017.09.050)
Pyke, R. M. et al. Evolutionary pressure against MHC class II binding cancer mutations. Cell 175, 416–428 (2018). (PMID: 10.1016/j.cell.2018.08.048)
Ding, J. et al. Systematic analysis of somatic mutations impacting gene expression in 12 tumour types. Nat. Commun. 6, 8554 (2015). (PMID: 10.1038/ncomms9554)
Huang, N., Shah, P. K. & Li, C. Lessons from a decade of integrating cancer copy number alterations with gene expression profiles. Brief. Bioinform. 13, 305–316 (2012). (PMID: 10.1093/bib/bbr056)
Fehrmann, R. S. et al. Gene expression analysis identifies global gene dosage sensitivity in cancer. Nat. Genet. 47, 115–125 (2015). (PMID: 10.1038/ng.3173)
Köbel, M. et al. Optimized p53 immunohistochemistry is an accurate predictor of TP53 mutation in ovarian carcinoma. J. Pathol. Clin. Res. 2, 247–258 (2016). (PMID: 10.1002/cjp2.53)
Murnyák, B. & Hortobágyi, T. Immunohistochemical correlates of TP53 somatic mutations in cancer. Oncotarget 7, 64910 (2016). (PMID: 10.18632/oncotarget.11912)
Cole, A. J. et al. Assessing mutant p53 in primary high-grade serous ovarian cancer using immunohistochemistry and massively parallel sequencing. Sci. Rep. 6, 26191 (2016). (PMID: 10.1038/srep26191)
Tran, E. et al. T-cell transfer therapy targeting mutant KRAS in cancer. N. Engl. J. Med. 375, 2255–2262 (2016). (PMID: 10.1056/NEJMoa1609279)
Hsiue, E. H. et al. Targeting a neoantigen derived from a common TP53 mutation. Science 371, eabc8697 (2021). (PMID: 10.1126/science.abc8697)
Eigen, M. Selforganization of matter and the evolution of biological macromolecules. Naturwissenschaften 58, 465–523 (1971). (PMID: 10.1007/BF00623322)
Gerland, U. & Hwa, T. On the selection and evolution of regulatory DNA motifs. J. Mol. Evol. 55, 386–400 (2002). (PMID: 10.1007/s00239-002-2335-z)
Łuksza, M. & Lässig, M. A predictive fitness model for influenza. Nature 507, 57–61 (2014). (PMID: 10.1038/nature13087)
Balachandran, V. P. et al. Identification of unique neoantigen qualities in long-term survivors of pancreatic cancer. Nature 551, 512–516 (2017). (PMID: 10.1038/nature24462)
Łuksza, M. et al. A neoantigen fitness model predicts tumour response to checkpoint blockade immunotherapy. Nature 551, 517–520 (2017). (PMID: 10.1038/nature24473)
Ma, L. et al. A plausible model for the digital response of p53 to DNA damage. Proc. Natl Acad. Sci. USA 102, 14266–14271 (2005). (PMID: 10.1073/pnas.0501352102)
Gaglia, G., Guan, Y., Shah, J. V. & Lahav, G. Activation and control of p53 tetramerization in individual living cells. Proc. Natl Acad. Sci. USA 110, 15497–15501 (2013). (PMID: 10.1073/pnas.1311126110)
Price, G. R. Fisher’s ‘fundamental theorem’ made clear. Ann. Hum. Genet. 36, 129–140 (1972). (PMID: 10.1111/j.1469-1809.1972.tb00764.x)
Hunter, J. C. et al. Biochemical and structural analysis of common cancer-associated KRAS mutations. Mol. Cancer Res. 13, 1325–1335 (2015). (PMID: 10.1158/1541-7786.MCR-15-0203)
Shoval, O. et al. Evolutionary trade-offs, pareto optimality, and the geometry of phenotype space. Science 336, 1157–1160 (2012). (PMID: 10.1126/science.1217405)
Pinheiro, F., Warsi, O., Andersson, D. I. & Lässig, M. Metabolic fitness landscapes predict the evolution of antibiotic resistance. Nat. Ecol. Evol. 5, 677–687 (2021). (PMID: 10.1038/s41559-021-01397-0)
Kratz, C. P. et al. Analysis of the Li–Fraumeni spectrum based on an international germline TP53 variant data set: an International Agency for Research on Cancer TP53 database analysis. JAMA Oncol. 7, 1800–1805 (2021). (PMID: 10.1001/jamaoncol.2021.4398)
De Andrade, K. C. et al. Cancer incidence, patterns, and genotype–phenotype associations in individuals with pathogenic or likely pathogenic germline TP53 variants: an observational cohort study. Lancet Oncol. 22, 1787–1798 (2021). (PMID: 10.1016/S1470-2045(21)00580-5)
Martincorena, I. & Campbell, P. J. Somatic mutation in cancer and normal cells. Science 349, 1483–1489 (2015). (PMID: 10.1126/science.aab4082)
Caushi, J. X. et al. Transcriptional programs of neoantigen-specific TIL in anti-PD-1-treated lung cancers. Nature 596, 126–132 (2021). (PMID: 10.1038/s41586-021-03752-4)
Bear, A. S. et al. Biochemical and functional characterization of mutant KRAS epitopes validates this oncoprotein for immunological targeting. Nat. Commun. 12, 4365 (2021). (PMID: 10.1038/s41467-021-24562-2)
Malekzadeh, P. et al. Antigen experienced T cells from peripheral blood recognize p53 neoantigens. Clin. Cancer Res. 26, 1267–1276 (2020). (PMID: 10.1158/1078-0432.CCR-19-1874)
Colom, B. et al. Mutant clones in normal epithelium outcompete and eliminate emerging tumours. Nature 598, 510–514 (2021). (PMID: 10.1038/s41586-021-03965-7)
Wylie, A. et al. p53 genes function to restrain mobile elements. Genes Dev. 30, 64–77 (2016). (PMID: 10.1101/gad.266098.115)
Levine, A. J., Ting, D. T. & Greenbaum, B. D. p53 and the defenses against genome instability caused by transposons and repetitive elements. Bioessays 38, 508–513 (2016). (PMID: 10.1002/bies.201600031)
McKerrow, W. et al. LINE-1 expression in cancer correlates with p53 mutation, copy number alteration, and S phase checkpoint. Proc. Natl Acad. Sci. USA 119, e2115999119 (2022). (PMID: 10.1073/pnas.2115999119)
Dayan, P., Hinton, G. E., Neal, R. M. & Zemel, R. S. The Helmholtz machine. Neural Comput. 7, 889–904 (1995). (PMID: 10.1162/neco.1995.7.5.889)
Grant Information:
R01 CA240924 United States CA NCI NIH HHS; R01 AI081848 United States AI NIAID NIH HHS; R01 CA227534 United States CA NCI NIH HHS; P30 CA008748 United States CA NCI NIH HHS; P50 CA221745 United States CA NCI NIH HHS; U01 CA228963 United States CA NCI NIH HHS; K12 CA184746 United States CA NCI NIH HHS; P01 CA087497 United States CA NCI NIH HHS; U01 CA224175 United States CA NCI NIH HHS
Entry Date(s):
Date Created: 20220511 Date Completed: 20220603 Latest Revision: 20230921
Update Code:
20240105
PubMed Central ID:
PMC9159948
DOI:
10.1038/s41586-022-04696-z
PMID:
35545680
Czasopismo naukowe
Missense driver mutations in cancer are concentrated in a few hotspots 1 . Various mechanisms have been proposed to explain this skew, including biased mutational processes 2 , phenotypic differences 3-6 and immunoediting of neoantigens 7,8 ; however, to our knowledge, no existing model weighs the relative contribution of these features to tumour evolution. We propose a unified theoretical 'free fitness' framework that parsimoniously integrates multimodal genomic, epigenetic, transcriptomic and proteomic data into a biophysical model of the rate-limiting processes underlying the fitness advantage conferred on cancer cells by driver gene mutations. Focusing on TP53, the most mutated gene in cancer 1 , we present an inference of mutant p53 concentration and demonstrate that TP53 hotspot mutations optimally solve an evolutionary trade-off between oncogenic potential and neoantigen immunogenicity. Our model anticipates patient survival in The Cancer Genome Atlas and patients with lung cancer treated with immunotherapy as well as the age of tumour onset in germline carriers of TP53 variants. The predicted differential immunogenicity between hotspot mutations was validated experimentally in patients with cancer and in a unique large dataset of healthy individuals. Our data indicate that immune selective pressure on TP53 mutations has a smaller role in non-cancerous lesions than in tumours, suggesting that targeted immunotherapy may offer an early prophylactic opportunity for the former. Determining the relative contribution of immunogenicity and oncogenic function to the selective advantage of hotspot mutations thus has important implications for both precision immunotherapies and our understanding of tumour evolution.
(© 2022. The Author(s).)
Erratum in: Nature. 2022 May 31;:. (PMID: 35641605)

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies