Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

IFN-γ and TNF Induce Senescence and a Distinct Senescence-Associated Secretory Phenotype in Melanoma.

Tytuł:
IFN-γ and TNF Induce Senescence and a Distinct Senescence-Associated Secretory Phenotype in Melanoma.
Autorzy:
Homann L; Department of Dermatology, University of Tuebingen, 72076 Tuebingen, Germany.
Rentschler M; Department of Dermatology, University of Tuebingen, 72076 Tuebingen, Germany.; Institute of Physiology I, Department of Vegetative and Clinical Physiology, University of Tuebingen, 72074 Tuebingen, Germany.
Brenner E; Department of Dermatology, University of Tuebingen, 72076 Tuebingen, Germany.
Böhm K; Department of Dermatology, University of Tuebingen, 72076 Tuebingen, Germany.
Röcken M; Department of Dermatology, University of Tuebingen, 72076 Tuebingen, Germany.
Wieder T; Institute of Physiology I, Department of Vegetative and Clinical Physiology, University of Tuebingen, 72074 Tuebingen, Germany.
Źródło:
Cells [Cells] 2022 Apr 30; Vol. 11 (9). Date of Electronic Publication: 2022 Apr 30.
Typ publikacji:
Journal Article; Research Support, Non-U.S. Gov't
Język:
English
Imprint Name(s):
Original Publication: Basel, Switzerland : MDPI
MeSH Terms:
Melanoma*/pathology
Senescence-Associated Secretory Phenotype*
Interferon-gamma/*metabolism
Tumor Necrosis Factor-alpha/*metabolism
CD8-Positive T-Lymphocytes/metabolism ; Cellular Senescence ; Humans
References:
Genes Dev. 2020 Dec 1;34(23-24):1565-1576. (PMID: 33262144)
Cytokine. 1990 Sep;2(5):357-62. (PMID: 2103334)
N Engl J Med. 2022 Jan 6;386(1):24-34. (PMID: 34986285)
J Clin Invest. 2020 May 1;130(5):2570-2586. (PMID: 32017708)
Cancer Immunol Immunother. 2021 May;70(5):1343-1350. (PMID: 33141285)
Nan Fang Yi Ke Da Xue Xue Bao. 2020 Dec 30;40(12):1784-1792. (PMID: 33380388)
Cell Death Differ. 2022 May;29(5):946-960. (PMID: 35361964)
Oncoimmunology. 2021 May 24;10(1):1916243. (PMID: 34104540)
Annu Rev Pathol. 2010;5:99-118. (PMID: 20078217)
Cell. 2019 Oct 31;179(4):813-827. (PMID: 31675495)
J Immunol Res. 2020 Jun 28;2020:9235638. (PMID: 32671117)
J Exp Med. 1978 Jul 1;148(1):163-81. (PMID: 307587)
Semin Cancer Biol. 2022 Jun;81:5-13. (PMID: 33775830)
Cells. 2019 Apr 06;8(4):. (PMID: 30959874)
Cancers (Basel). 2022 Mar 08;14(6):. (PMID: 35326515)
Cell Commun Signal. 2017 May 4;15(1):17. (PMID: 28472950)
J Invest Dermatol. 2022 Mar 23;:. (PMID: 35339277)
Cancer Res. 2016 Jun 1;76(11):3145-55. (PMID: 27013197)
Oncoimmunology. 2020 Aug 30;9(1):1808424. (PMID: 32939325)
J Natl Cancer Inst. 2021 Oct 1;113(10):1285-1298. (PMID: 33792717)
Oncoimmunology. 2015 Mar 19;4(7):e1014760. (PMID: 26140238)
Curr Med Chem. 2012;19(1):145-51. (PMID: 22300088)
Biol Reprod. 2002 Aug;67(2):668-73. (PMID: 12135912)
In Vivo. 2014 Nov-Dec;28(6):1005-11. (PMID: 25398793)
Mol Oncol. 2021 Oct;15(10):2634-2671. (PMID: 32981205)
Cancers (Basel). 2021 Jul 22;13(15):. (PMID: 34359573)
Biology (Basel). 2020 Dec 21;9(12):. (PMID: 33371508)
Cancer Cell. 2016 Oct 10;30(4):533-547. (PMID: 27728804)
Nucleic Acids Res. 2016 Jan 8;44(1):164-74. (PMID: 26384566)
Genes Dev. 1999 Jun 15;13(12):1501-12. (PMID: 10385618)
Cell Biochem Biophys. 2000;33(2):189-97. (PMID: 11325039)
Int J Oncol. 2020 Sep;57(3):609-618. (PMID: 32582963)
Sci Transl Med. 2016 Oct 26;8(362):362ra144. (PMID: 27797960)
Biogerontology. 2013 Dec;14(6):617-28. (PMID: 24114507)
Nature. 2012 Dec 13;492(7428):252-5. (PMID: 23143332)
Science. 1998 Nov 20;282(5393):1497-501. (PMID: 9822382)
Aging Cell. 2015 Aug;14(4):644-58. (PMID: 25754370)
Chin Clin Oncol. 2018 Dec;7(6):62. (PMID: 30180747)
PLoS Biol. 2008 Dec 2;6(12):2853-68. (PMID: 19053174)
Aging (Albany NY). 2012 Dec;4(12):932-51. (PMID: 23385065)
Lancet Oncol. 2003 Dec;4(12):748-59. (PMID: 14662431)
Oncol Lett. 2019 Jul;18(1):830-837. (PMID: 31289560)
FASEB J. 2019 Oct;33(10):10942-10953. (PMID: 31284735)
J Clin Invest. 2013 Mar;123(3):966-72. (PMID: 23454759)
Cell Physiol Biochem. 2018;51(3):1103-1118. (PMID: 30476917)
Ann Allergy Asthma Immunol. 2000 Jul;85(1):9-18; quiz 18, 21. (PMID: 10923599)
Oncol Lett. 2021 Aug;22(2):603. (PMID: 34188705)
Ann Oncol. 2017 Aug 01;28(8):1988-1995. (PMID: 28595336)
Cancers (Basel). 2020 Aug 08;12(8):. (PMID: 32784465)
Cell Cycle. 2013 Sep 15;12(18):3063-9. (PMID: 23974099)
J Leukoc Biol. 2012 Feb;91(2):299-309. (PMID: 22045868)
Nat Commun. 2020 Mar 12;11(1):1335. (PMID: 32165639)
Nat Cell Biol. 2016 Jul;18(7):777-89. (PMID: 27323328)
J Immunol. 1993 Jul 1;151(1):518-25. (PMID: 8100846)
Cell Physiol Biochem. 2013;32(4):801-13. (PMID: 24080940)
Annu Rev Virol. 2019 Sep 29;6(1):567-584. (PMID: 31283436)
Cancer Res. 2010 Apr 15;70(8):3228-38. (PMID: 20354191)
Cytokine. 2000 Jun;12(6):547-54. (PMID: 10843728)
Proc Natl Acad Sci U S A. 2009 Oct 6;106(40):17031-6. (PMID: 19805069)
Proc Natl Acad Sci U S A. 2014 Oct 28;111(43):15514-9. (PMID: 25313054)
Pigment Cell Melanoma Res. 2014 Jul;27(4):590-600. (PMID: 24495407)
Annu Rev Physiol. 2013;75:685-705. (PMID: 23140366)
Genes Dev. 1995 Apr 15;9(8):935-44. (PMID: 7774811)
J Immunol. 2014 Jul 15;193(2):950-60. (PMID: 24913980)
Cancer Metastasis Rev. 2006 Sep;25(3):333-56. (PMID: 17029028)
Cancer Discov. 2017 Feb;7(2):165-176. (PMID: 27979832)
Science. 2018 Mar 23;359(6382):1344-1345. (PMID: 29567702)
Nat Cell Biol. 2012 Feb 26;14(3):266-75. (PMID: 22366686)
Expert Rev Clin Immunol. 2014 Oct;10(10):1395-404. (PMID: 25225774)
ChemMedChem. 2017 Dec 7;12(23):1927-1930. (PMID: 29094797)
Nature. 2013 Sep 19;501(7467):421-5. (PMID: 23945590)
Cancer Immunol Immunother. 2022 Mar;71(3):507-526. (PMID: 34355266)
Front Oncol. 2021 Oct 13;11:740002. (PMID: 34722291)
Nat Cell Biol. 2019 Jan;21(1):94-101. (PMID: 30602768)
Cancer Cell. 2008 Jun;13(6):507-18. (PMID: 18538734)
J Allergy Clin Immunol. 2018 Nov;142(5):1403-1414. (PMID: 29596939)
Oncogene. 2019 May;38(20):3886-3902. (PMID: 30692638)
Nature. 2013 Feb 21;494(7437):361-5. (PMID: 23376950)
Science. 1996 Dec 6;274(5293):1672-7. (PMID: 8939849)
Nat Rev Mol Cell Biol. 2014 Jul;15(7):482-96. (PMID: 24954210)
J Leukoc Biol. 2019 Jun;105(6):1275-1283. (PMID: 30811627)
Cancer Res. 1997 Nov 1;57(21):4868-75. (PMID: 9354451)
Nat Commun. 2020 Oct 5;11(1):4979. (PMID: 33020468)
Eur J Immunol. 2021 Mar;51(3):544-556. (PMID: 33450785)
Nat Rev Cancer. 2008 Apr;8(4):253-67. (PMID: 18354415)
Contributed Indexing:
Keywords: SASP; cell cycle inhibition; doxorubicin; immunotherapy; interferon; melanoma; palbociclib; senescence; tumor dormancy; tumor necrosis factor
Substance Nomenclature:
0 (Tumor Necrosis Factor-alpha)
82115-62-6 (Interferon-gamma)
Entry Date(s):
Date Created: 20220514 Date Completed: 20220518 Latest Revision: 20220716
Update Code:
20240105
PubMed Central ID:
PMC9103004
DOI:
10.3390/cells11091514
PMID:
35563820
Czasopismo naukowe
Immune checkpoint blockade (ICB) therapy is a central pillar of melanoma treatment leading to durable response rates. Important mechanisms of action of ICB therapy include disinhibition of CD4 + and CD8 + T cells. Stimulated CD4 + T helper 1 cells secrete the effector cytokines interferon-gamma (IFN-γ) and tumor necrosis factor alpha (TNF), which induce senescence in tumor cells. Besides being growth-arrested, senescent cells are metabolically active and secrete a large spectrum of factors, which are summarized as senescence-associated secretory phenotype (SASP). This secretome affects the tumor growth. Here, we compared the SASP of cytokine-induced senescent (CIS) cells with the SASP of therapy-induced senescent (TIS) cells. Therefore, we established in vitro models for CIS and TIS in melanoma. The human melanoma cell lines SK-MEL-28 and WM115 were treated with the cytokines IFN-γ and TNF as CIS, the chemotherapeutic agent doxorubicin, and the cell cycle inhibitor palbociclib as TIS. Then, we determined several senescence markers, i.e., growth arrest, p21 expression, and senescence-associated β-galactosidase (SA-β-gal) activity. For SASP analyses, we measured the regulation and secretion of several common SASP factors using qPCR arrays, protein arrays, and ELISA. Each treatment initiated a stable growth arrest, enhanced SA-β-gal activity, and-except palbociclib-increased the expression of p21. mRNA and protein analyses revealed that gene expression and secretion of SASP factors were severalfold stronger in CIS than in TIS. Finally, we showed that treatment with the conditioned media (CM) derived from cytokine- and palbociclib-treated cells induced senescence characteristics in melanoma cells. Thus, we conclude that senescence induction via cytokines may lead to self-sustaining senescence surveillance of melanoma.
Zaloguj się, aby uzyskać dostęp do pełnego tekstu.

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies