Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

The folds and faults kinematic association in Zagros.

Tytuł:
The folds and faults kinematic association in Zagros.
Autorzy:
Ghanbarian MA; Department of Earth Science, College of Science, Shiraz University, Shiraz, Iran.
Derakhshani R; Department of Geology, Shahid Bahonar University of Kerman, Kerman, Iran. .; Department of Earth Sciences, Utrecht University, Utrecht, The Netherlands. .
Źródło:
Scientific reports [Sci Rep] 2022 May 19; Vol. 12 (1), pp. 8350. Date of Electronic Publication: 2022 May 19.
Typ publikacji:
Journal Article
Język:
English
Imprint Name(s):
Original Publication: London : Nature Publishing Group, copyright 2011-
MeSH Terms:
Biomechanical Phenomena*
Iran
References:
Crittenden, M. D. Jr. Regional extent and age of thrusts near Rockport Reservoir and relation to possible exploration targets in Northern Utah. AAPG Bull. 58, 2428–2435. https://doi.org/10.1306/83D91BC8-16C7-11D7-8645000102C1865D (1974). (PMID: 10.1306/83D91BC8-16C7-11D7-8645000102C1865D)
Geiser, P. & Engelder, T. Distribution of layer-parallel shortening fabrics in Appalachian Foreland of New York and Pennsylvania: Evidence for two non-coaxial phases of alleghany orogeny. AAPG Bull. 66, 1168–1168 (1982).
van der Pluijm, B. A. Timing and spatial distribution of deformation in the Newfoundland Appalachians: A “multi-stage collision” history. Tectonophysics 135, 15–24. https://doi.org/10.1016/0040-1951(87)90148-X (1987). (PMID: 10.1016/0040-1951(87)90148-X)
Hibbard, J. & Hall, S. Early Acadian sinistral shear in north-central Maine, USA. J. Geol. Soc. 150, 815–818. https://doi.org/10.1144/gsjgs.150.5.0815 (1993). (PMID: 10.1144/gsjgs.150.5.0815)
Jamison, W. R. Geometric analysis of fold development in overthrust terranes. J. Struct. Geol. 9, 207–219. https://doi.org/10.1016/0191-8141(87)90026-5 (1987). (PMID: 10.1016/0191-8141(87)90026-5)
Mitra, S. Fault-propagation folds: Geometry, kinematic evolution, and hydrocarbon traps. AAPG Bull. 74, 921–945. https://doi.org/10.1306/0C9B23CB-1710-11D7-8645000102C1865D (1990). (PMID: 10.1306/0C9B23CB-1710-11D7-8645000102C1865D)
Mitra, S. Fold-accommodation faults. AAPG Bull. 86, 671–693. https://doi.org/10.1306/61EEDB7A-173E-11D7-8645000102C1865D (2002). (PMID: 10.1306/61EEDB7A-173E-11D7-8645000102C1865D)
Suppe, J., Connors, C. D. & Zhang, Y. Shear fault-bend folding. In: K. R. McClay, 2004, Thrust tectonics and hydrocarbon systems: AAPG Memoir 82, 303–323 (2004).
Li, T. et al. The 2019 Mw 58 Changning, China earthquake: A cascade rupture of fold-accommodation faults induced by fluid injection. Tectonophysics 801, 228721. https://doi.org/10.1016/j.tecto.2021.228721 (2021). (PMID: 10.1016/j.tecto.2021.228721)
Tavani, S. et al. A review of deformation pattern templates in foreland basin systems and fold-and-thrust belts: Implications for the state of stress in the frontal regions of thrust wedges. Earth Sci. Rev. 141, 82–104. https://doi.org/10.1016/j.earscirev.2014.11.013 (2015). (PMID: 10.1016/j.earscirev.2014.11.013)
Machuca, S., García-Delgado, H. & Velandia, F. Studying active fault-related folding on tectonically inverted orogens: A case study at the Yariguíes Range in the Colombian Northern Andes. Geomorphology 375, 107515. https://doi.org/10.1016/j.geomorph.2020.107515 (2021). (PMID: 10.1016/j.geomorph.2020.107515)
Mathew, G., Singhvi, A. K. & Karanth, R. V. Luminescence chronometry and geomorphic evidence of active fold growth along the Kachchh Mainland Fault (KMF), Kachchh, India: Seismotectonic implications. Tectonophysics 422, 71–87. https://doi.org/10.1016/j.tecto.2006.05.009 (2006). (PMID: 10.1016/j.tecto.2006.05.009)
Hamdon, A. N. & Znad, R. K. An emerging fault related fold (Mahad Anticline) and its morphotectonic interpretations in Northern Iraq. Iraqi J. Sci. 62, 1550–1561. https://doi.org/10.24996/ijs.2021.62.5.18 (2021). (PMID: 10.24996/ijs.2021.62.5.18)
Sarkarinejad, K. & Ghanbarian, M. A. The Zagros hinterland fold-and-thrust belt in-sequence thrusting, Iran. J. Asian Earth Sci. 85, 66–79. https://doi.org/10.1016/j.jseaes.2014.01.017 (2014). (PMID: 10.1016/j.jseaes.2014.01.017)
Ghanbarian, M. A., Yassaghi, A. & Derakhshani, R. Detecting a sinistral transpressional deformation belt in the Zagros. Geosciences 11, 226. https://doi.org/10.3390/geosciences11060226 (2021). (PMID: 10.3390/geosciences11060226)
Ghanbarian, M. A. & Derakhshani, R. Systematic Variations in the Deformation Intensity in the Zagros Hinterland Fold-and-Thrust Belt, Iran. Z. Deutschen Gesellschaft Geowissenschaften https://doi.org/10.1127/zdgg/2021/0276 (2022). (PMID: 10.1127/zdgg/2021/0276)
Stöcklin, J. The Geology of Continental Margins 873–887 (Springer, 1974). (PMID: 10.1007/978-3-662-01141-6_64)
Talbot, C. & Alavi, M. The past of a future syntaxis across the Zagros. Geol. Soc. Lond. Spec. Publ. 100, 89–109. https://doi.org/10.1144/GSL.SP.1996.100.01.08 (1996). (PMID: 10.1144/GSL.SP.1996.100.01.08)
Berberian, M. & King, G. Towards a paleogeography and tectonic evolution of Iran. Can. J. Earth Sci. 18, 210–265. https://doi.org/10.1139/e81-019 (1981). (PMID: 10.1139/e81-019)
Mohajjel, M. & Fergusson, C. Jurassic to Cenozoic tectonics of the Zagros Orogen in northwestern Iran. Int. Geol. Rev. 56, 263–287. https://doi.org/10.1080/00206814.2013.853919 (2014). (PMID: 10.1080/00206814.2013.853919)
Derakhshani, R. & Farhoudi, G. Existence of the Oman Line in the Empty Quarter of Saudi Arabia and its continuation in the Red Sea. J. Appl. Sci. 5, 745–752. https://doi.org/10.3923/jas.2005.745.752 (2005). (PMID: 10.3923/jas.2005.745.752)
Mehrabi, A., Dastanpour, M., Radfar, S., Vaziri, M. & Derakhshani, R. Detection of fault lineaments of the Zagros fold-thrust belt based on Landsat imagery interpretation and their relationship with Hormuz series salt dome locations using GIS analysis. Geosciences 24, 17–32. https://doi.org/10.22071/gsj.2015.41666 (2015). (PMID: 10.22071/gsj.2015.41666)
Rahnamarad, J., Farhoudi, G., Ghorbani, H., Habibimood, S. & Derakhshani, R. Pierced salt domes in the Persian Gulf and in the Zagros mountain ranges. Iran. J. Earth Sci. 1, 57–72 (2009).
Alavi, M. Regional stratigraphy of the Zagros fold-thrust belt of Iran and its proforeland evolution. Am. J. Sci. 304, 1–20. https://doi.org/10.2475/ajs.304.1.1 (2004). (PMID: 10.2475/ajs.304.1.1)
Bigi, S., Carminati, E., Aldega, L., Trippetta, F. & Kavoosi, M. A. Zagros fold and thrust belt in the Fars province (Iran) I: Control of thickness/rheology of sediments and pre-thrusting tectonics on structural style and shortening. Mar. Pet. Geol. 91, 211–224. https://doi.org/10.1016/j.marpetgeo.2018.01.005 (2018). (PMID: 10.1016/j.marpetgeo.2018.01.005)
Mouthereau, F., Lacombe, O. & Vergés, J. Building the Zagros collisional orogen: Timing, strain distribution and the dynamics of Arabia/Eurasia plate convergence. Tectonophysics 532, 27–60. https://doi.org/10.1016/j.tecto.2012.01.022 (2012). (PMID: 10.1016/j.tecto.2012.01.022)
Carminati, E., Aldega, L., Bigi, S., Minelli, G. & Shaban, A. Not so simple “simply-folded Zagros”: The role of pre-collisional extensional faulting, salt tectonics and multi-stage thrusting in the Sarvestan transfer zone (Fars, Iran). Tectonophysics 671, 235–248. https://doi.org/10.1016/j.tecto.2016.01.033 (2016). (PMID: 10.1016/j.tecto.2016.01.033)
Casciello, E. et al. Fold patterns and multilayer rheology of the Lurestan Province, Zagros simply folded belt (Iran). J. Geol. Soc. 166, 947–959. https://doi.org/10.1144/0016-76492008-138 (2009). (PMID: 10.1144/0016-76492008-138)
Stocklin, J. Structural history and tectonics of Iran: A review. AAPG Bull. 52, 1229–1258. https://doi.org/10.1306/5D25C4A5-16C1-11D7-8645000102C1865D (1968). (PMID: 10.1306/5D25C4A5-16C1-11D7-8645000102C1865D)
Ghanbarian, M. A. & Yassaghi, A. Structural and microstructural analyses of the deformation in the Faryadoun region, NE of the Zagros orogenic belt: Evidence for the occurrence of the sinistral shear. Geosciences 30, 243–252. https://doi.org/10.22071/gsj.2019.144081.1523 (2020). (PMID: 10.22071/gsj.2019.144081.1523)
Stern, R. J. & Johnson, P. Continental lithosphere of the Arabian Plate: A geologic, petrologic, and geophysical synthesis. Earth Sci. Rev. 101, 29–67. https://doi.org/10.1016/j.earscirev.2010.01.002 (2010). (PMID: 10.1016/j.earscirev.2010.01.002)
Shahidi, A., Taraz, H., Zamani, P., Alavi, M. & PartoAzar, H. Geological map of the Dehbid area. Geol. Surv. Iran Tehran Iran Scale 1, 100000 (1999).
Soheyli, M. et al. Geological Map of the Eghlid Area. Geological Survey of Iran, Tehran, Iran, Scale. 1:250,000 (1990).
Haftlang, R. et al. Geological map of Kuh-e-Faryadon. Sheet No. 6651II NE. Scale: :25000. Geological Survey of Iran, Tehran, Iran (2013).
Ghanbarian, M. A. Kinematic Analysis of the Tectonic Structures in the Hinterland of the Zagros Orogenic Belt, Iran PhD thesis (2014).
Ghanbarian, M. A. & Sarkarinejad, K. Evidences of sinistral flow in the Zagros inclined transpression, Iran. The 2nd national symposium on tectonics of Iran, Geological survey of Iran, Tehran, Iran. (2014).
Ghanbarian, M. A., Yassaghi, A. & Sadeghi mazidi, M. in 2nd TRIGGER International Conference, Trans-disciplinary Research on Iranian Geology, Geodynamics, Earthquakes and Resources (Tehran, Iran, 2018).
Sadeghi Mazidi, M. Paleo Stress Analysis of the Zagros Hinterland Fold-and-Thrust Belt in Bavanat to Shurjestan (2019).
Mohajjel, M., Fergusson, C. & Sahandi, M. Cretaceous-Tertiary convergence and continental collision, Sanandaj-Sirjan zone, western Iran. J. Asian Earth Sci. 21, 397–412. https://doi.org/10.1016/S1367-9120(02)00035-4 (2003). (PMID: 10.1016/S1367-9120(02)00035-4)
Shakerardakani, F. et al. Panafrican basement and Mesozoic gabbro in the Zagros orogenic belt in the Dorud-Azna region (NW Iran): Laser-ablation ICP–MS zircon ages and geochemistry. Tectonophysics 647, 146–171. https://doi.org/10.1016/j.tecto.2015.02.020 (2015). (PMID: 10.1016/j.tecto.2015.02.020)
Sarkarinejad, K., Partabian, A. & Faghih, A. Variations in the kinematics of deformation along the Zagros inclined transpression zone, Iran: Implications for defining a curved inclined transpression zone. J. Struct. Geol. 48, 126–136. https://doi.org/10.1016/j.jsg.2012.11.009 (2013). (PMID: 10.1016/j.jsg.2012.11.009)
Sarkarinejad, K. & Azizi, A. Slip partitioning and inclined dextral transpression along the Zagros Thrust System, Iran. J. Struct. Geol. 30, 116–136. https://doi.org/10.1016/j.jsg.2007.10.001 (2008). (PMID: 10.1016/j.jsg.2007.10.001)
Sarkarinejad, K., Faghih, A. & Grasemann, B. Transpressional deformations within the Sanandaj-Sirjan metamorphic belt (Zagros mountains, Iran). J. Struct. Geol. 30, 818–826. https://doi.org/10.1016/j.jsg.2008.03.003 (2008). (PMID: 10.1016/j.jsg.2008.03.003)
Mouthereau, F., Lacombe, O. & Meyer, B. The Zagros folded belt (Fars, Iran): Constraints from topography and critical wedge modelling. Geophys. J. Int. 165, 336–356. https://doi.org/10.1111/j.1365-246X.2006.02855.x (2006). (PMID: 10.1111/j.1365-246X.2006.02855.x)
Thorbjornsen, K. L. & Dunne, W. M. Origin of a thrust-related fold: Geometric vs kinematic tests. J. Struct. Geol. 19, 303–319. https://doi.org/10.1016/S0191-8141(96)00090-9 (1997). (PMID: 10.1016/S0191-8141(96)00090-9)
Konon, A. Buckle folding in the Kielce Unit, Holy Cross Mountains, central Poland. Acta Geol. Pol. 56, 375–405 (2006).
Nadimi, A. & Konon, A. Strike-slip faulting in the central part of the Sanandaj-Sirjan Zone, Zagros Orogen, Iran. J. Struct. Geol. 40, 2–16. https://doi.org/10.1016/j.jsg.2012.04.007 (2012). (PMID: 10.1016/j.jsg.2012.04.007)
Entry Date(s):
Date Created: 20220519 Date Completed: 20220523 Latest Revision: 20220713
Update Code:
20240105
PubMed Central ID:
PMC9120139
DOI:
10.1038/s41598-022-12337-8
PMID:
35589770
Czasopismo naukowe
The Zagros orogenic belt, one of the most prominent and famous collisional belts in the central part of the Alpine-Himalayan orogenic chain, is located between the southern margin of the Central Iranian microcontinent and the northern margin of the Arabian plate. The structural architecture and folds and faults relationships of a significant segment of the south-central part of the Zagros' hinterland are investigated in this study through stereoscopy of aerial photographs, interpretations of satellite images, consideration of the major ground topographic variations, and field research. This research found that there must have been at least two major deformation events: (1) a ductile phase, which is older than the Eocene, and (2) a semi-brittle deformation stage, which is younger than the early Miocene and is represented by thrusting, folding, and strike-slip faulting. The presence of numerous fault-related folds and fold-accommodation faults in this area demonstrates the close kinematic relationship between folding and faulting. Based on the topographic changes, a major hidden tear fault and a basement hidden back thrust, which play important roles in the architecture of the area, have been suggested.
(© 2022. The Author(s).)
Zaloguj się, aby uzyskać dostęp do pełnego tekstu.

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies