Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Mutagens in raw ewe milk in Orava region, northern Slovakia: metals.

Tytuł:
Mutagens in raw ewe milk in Orava region, northern Slovakia: metals.
Autorzy:
Toman R; Slovak University of Agriculture, Tr. A. Hlinku 2, 94976, Nitra, Slovak Republic. .
Psenkova M; Slovak University of Agriculture, Tr. A. Hlinku 2, 94976, Nitra, Slovak Republic.
Tancin V; Slovak University of Agriculture, Tr. A. Hlinku 2, 94976, Nitra, Slovak Republic.
Miskeje M; Slovak University of Agriculture, Tr. A. Hlinku 2, 94976, Nitra, Slovak Republic.
Źródło:
Environmental science and pollution research international [Environ Sci Pollut Res Int] 2022 Sep; Vol. 29 (41), pp. 62259-62271. Date of Electronic Publication: 2022 May 23.
Typ publikacji:
Journal Article
Język:
English
Imprint Name(s):
Publication: <2013->: Berlin : Springer
Original Publication: Landsberg, Germany : Ecomed
MeSH Terms:
Metals, Heavy*/analysis
Animals ; Cadmium/analysis ; Child ; Environmental Monitoring/methods ; Female ; Humans ; Lead/analysis ; Milk/chemistry ; Mutagens/analysis ; Sheep ; Slovakia
References:
Abdulkhaliq A, Swaileh KM, Hussein RM, Matani M (2012) Levels of metals (Cd, Pb, Cu and Fe) in cow’s milk, dairy products and hen’s eggs from the West Bank, Palestine. Int Food Res J 19:1089–1094.
Akele ML, Abebe DZ, Alemu AK, Assefa AG, Madhusudhan A, de Oliveira RR (2017) Analysis of trace metal concentrations in raw cow’s milk from three dairy farms in North Gondar. Ethiopia: chemometric approach. Environ Monit Assess 189:499. https://doi.org/10.1007/s10661-017-6203-0. (PMID: 10.1007/s10661-017-6203-0)
Ando M, Ueda K, Okamoto Y, Kojima N (2011) Combined effects of manganese, iron, copper, and dopamine on oxidative DNA damage. J Health Sci 57:204–209. https://doi.org/10.1248/jhs.57.204. (PMID: 10.1248/jhs.57.204)
Andrade VM, Mateus ML, Batoréu MC, Aschner M, Marreilha dos Santos AP (2015) Lead, arsenic, and manganese metal mixture exposures: focus on biomarkers of effect. Biol Trace Elem Res 166:13–23. https://doi.org/10.1007/s12011-015-0267-x. (PMID: 10.1007/s12011-015-0267-x)
Antunović Z, Mioč B, Klir Ž, Širić I, Držaić V, Lončarić Z, Bukvić G, Novoselec J (2020) Concentrations of mercury and other elements in ewes’ milk: effect of lactation stage. Chemosphere 261:128128. https://doi.org/10.1016/j.chemosphere.2020.128128. (PMID: 10.1016/j.chemosphere.2020.128128)
Anyanwu BO, Ezejiofor AN, Igweze ZN, Orisakwe OE (2018) Heavy metal mixture exposure and effects in developing nations: an update. Toxics 6:65. https://doi.org/10.3390/toxics6040065. (PMID: 10.3390/toxics6040065)
Assem FL, Holmes P, Levy LS (2011) The mutagenicity and carcinogenicity of inorganic manganese compounds: a synthesis of the evidence. J Toxicol Environ Health B Crit Rev 14:537–570. https://doi.org/10.1080/10937404.2011.615111. (PMID: 10.1080/10937404.2011.615111)
Ataro A, McCrindle RI, Botha BM, McCrindle CME, Ndibewu PP (2008) Quantification of trace elements in raw cow’s milk by inductively coupled plasma mass spectrometry (ICP-MS). Food Chem 111:243–248. https://doi.org/10.1016/j.foodchem.2008.03.056. (PMID: 10.1016/j.foodchem.2008.03.056)
Ayar A, Sert D, Akin N (2009) The trace metal levels in milk and dairy products consumed in middle Anatolia-Turkey. Environ Monit Assess 152:1–12. https://doi.org/10.1007/s10661-008-0291-9. (PMID: 10.1007/s10661-008-0291-9)
Bartkova J, Horejsí Z, Koed K, Krämer A, Tort F, Zieger K, Guldberg P, Sehested M, Nesland JM, Lukas C, Ørntoft T, Lukas J, Bartek J (2005) DNA damage response as a candidate anti-cancer barrier in early human tumorigenesis. Nature 434:864–870. https://doi.org/10.1038/nature03482. (PMID: 10.1038/nature03482)
Benford DJ, Alexander J, Baines J, Bellinger DC, Carrington C, Devesa I, Peréz VA, Duxbury J, Fawell J, Hailemariam K, Montoro R, Ng J, Slob W, Veléz D, Yager JW, Zang Y (2011) Arsenic. In: Joint FAO/WHO Expert Committee on Food Additives. Meeting ( 72nd : 2010 : Rome, Italy) , World Health Organization & Food and Agriculture Organization of the United Nations. Safety evaluation of certain contaminants in food: prepared by the Seventy-second meeting of the Joint FAO/WHO Expert Committee on Food Additives ( JECFA) , Rome, World Health Organization, Geneva, pp 153–316.
Benková N, Kanianska R, Andráš P, Kizeková M, Jančová Ľ (2021) Evaluation of the agricultural soils pollution along the Orava River using pollution indices. Acta Fytotechn Zootechn 24:286–292. https://doi.org/10.15414/afz.2021.24.04.286-292. (PMID: 10.15414/afz.2021.24.04.286-292)
Boudebbouz A, Boudalia S, Bousbia A, Habila S, Boussadia MI, Gueroui Y (2021) Heavy metals levels in raw cow milk and health risk assessment across the globe: a systematic review. Sci Total Environ 751:141830. https://doi.org/10.1016/j.scitotenv.2020.141830. (PMID: 10.1016/j.scitotenv.2020.141830)
Briffa J, Sinagra E, Blundell R (2020) Heavy metal pollution in the environment and their toxicological effects on humans. Heliyon 6:e04691. https://doi.org/10.1016/j.heliyon.2020.e04691. (PMID: 10.1016/j.heliyon.2020.e04691)
Brown S, Lockart MM, Thomas CS, Bowman MK, Woski SA, Vincent JB (2020) Molecular structure of binary chromium(III)-DNA adducts. ChemBioChem 21:628–631. https://doi.org/10.1002/cbic.201900436. (PMID: 10.1002/cbic.201900436)
Capcarova M, Binkowski LJ, Stawarz R, Schwarczova L, Massanyi P (2019) Levels of essential and xenobiotic elements and their relationships in milk available on the Slovak market with the estimation of consumer exposure. Biol Trace Elem Res 188:404–411. https://doi.org/10.1007/s12011-018-1424-9. (PMID: 10.1007/s12011-018-1424-9)
Castro-González NP, Calderón-Sánchez F, Castro de Jesús J, Moreno-Rojas R, Tamariz-Flores JV, Pérez -Sato M, Soní-Guillermo E (2018) Heavy metals in cow’s milk and cheese produced in areas irrigated with waste water in Puebla, Mexico. Food Addit Contam B Surveill 11(33):36. https://doi.org/10.1080/19393210.2017.1397060. (PMID: 10.1080/19393210.2017.1397060)
Castro-González NP, Calderón-Sánchez F, Fuentes de María-Torres MT, Silva-Morales SS, González-Juárez FE (2021) Heavy metals in blood, milk and cow’s urine reared in irrigated areas with wastewater. Heliyon 7:e06693. https://doi.org/10.1016/j.heliyon.2021.e06693. (PMID: 10.1016/j.heliyon.2021.e06693)
Cinar N, Ozdemir S, Yucel O, Ucar F (2011) In which regions is breast-feeding safer from the impact of toxic elements from the environment? Bosn J Basic Med Sci 11:234–239. https://doi.org/10.17305/bjbms.2011.2556. (PMID: 10.17305/bjbms.2011.2556)
Claus Henn B, Schnaas L, Ettinger AS, Schwartz J, Lamadrid-Figueroa H, Hernández-Avila M, Amarasiriwardena C, Hu H, Bellinger DC, Wright RO, Téllez-Rojo MM (2012) Associations of early childhood manganese and lead coexposure with neurodevelopment. Environ Health Perspect 120(126):131. https://doi.org/10.1289/ehp.1003300. (PMID: 10.1289/ehp.1003300)
Danadevi K, Rozati R, Saleha BB, Hanumanth RP, Grover P (2003) DNA damage in workers exposed to lead using comet assay. Toxicology 187:183–193. https://doi.org/10.1016/s0300-483x(03)00054-4. (PMID: 10.1016/s0300-483x(03)00054-4)
Doguer C, Ha JH, Collins JF (2018) Intersection of iron and copper metabolism in the mammalian intestine and liver. Compr Physiol 8:1433–1461. https://doi.org/10.1002/cphy.c170045. (PMID: 10.1002/cphy.c170045)
Doria HB, Waldvogel AM, Pfenninger M (2021) Measuring mutagenicity in ecotoxicology: a case study of Cd exposure in Chironomus riparius. Environ Pollut 272:116004. https://doi.org/10.1016/j.envpol.2020.116004. (PMID: 10.1016/j.envpol.2020.116004)
Dumala N, Mangalampalli B, Chinde S, Kumari SI, Mahoob M, Rahman MF, Grover P (2017) Genotoxicity study of nickel oxide nanoparticles in female Wistar rats after acute oral exposure. Mutagenesis 32:417–427. https://doi.org/10.1093/mutage/gex007. (PMID: 10.1093/mutage/gex007)
Eastmond DA, Hartwig A, Anderson D, Anwar WA, Cimino MC, Dobrev I, Douglas GR, Nohmi T, Phillips DH, Vickers C (2009) Mutagenicity testing for chemical risk assessment: update of the WHO/IPCS Harmonized Scheme. Mutagenesis 24:341–349. https://doi.org/10.1093/mutage/gep014. (PMID: 10.1093/mutage/gep014)
EC (2001) Directive 2001/53/EC adapting for the 28th time Council Directive 67/548/EC on the classification, packaging and labelling of dangerous substances. OJEU L:225.
EC (2015) Commission regulation (EC) no. 488/2014 of 12 May 2014 amending Regulation (EC) No 1881/2006 as regards maximum levels of cadmium in foodstuffs. OJEU 49:5-24.
EFSA (2013) Scientific opinion on dietary reference values for manganese. EFSA J 11:3419. https://doi.org/10.2903/j.efsa.2013.3419. (PMID: 10.2903/j.efsa.2013.3419)
EFSA (2020) Update of the risk assessment of nickel in food and drinking water. EFSA J 11:6268. https://doi.org/10.2903/j.efsa.2020.6268. (PMID: 10.2903/j.efsa.2020.6268)
Flora SJ, Coulombe RA Jr, Sharma RP, Tandon SK (1989) Influence of dietary protein deficiency on lead-copper interaction in rats. Ecotoxicol Environ Saf 18:75–82. https://doi.org/10.1016/0147-6513(89)90093-6. (PMID: 10.1016/0147-6513(89)90093-6)
Fujii N, Yano S, Takeshita K (2016) Selective enhancing effect of metal ions on mutagenicity. Genes Environ 38:21. https://doi.org/10.1186/s41021-016-0049-5. (PMID: 10.1186/s41021-016-0049-5)
Gardiner MR, Nicol H (1971) Cobalt-selenium interactions in the nutrition of the rat. Aust J Exp Biol Med Sci 49:291–296. https://doi.org/10.1038/icb.1971.29. (PMID: 10.1038/icb.1971.29)
Gaucheron F (2005) The minerals of milk. Reprod Nutr Dev 45:473–483. https://doi.org/10.1051/rnd:2005030. (PMID: 10.1051/rnd:2005030)
Gaxiola-Robles R, Labrada-Martagón V, Celis de la Rosa Ade J, Acosta-Vargas B, Méndez-Rodríguez LC, Zenteno-Savín T (2014) Interaction between mercury (Hg), arsenic (As) and selenium (Se) affects the activity of glutathione S-transferase in breast milk; possible relationship with fish and sellfish intake. Nutr Hosp 30:436–446. https://doi.org/10.3305/nh.2014.30.2.7441. (PMID: 10.3305/nh.2014.30.2.7441)
Genchi G, Carocci A, Lauria G, Sinicropi MS, Catalano A (2020) Nickel: human health and environmental toxicology. Int J Environ Res Public Health 17:679. https://doi.org/10.3390/ijerph17030679. (PMID: 10.3390/ijerph17030679)
Gerber GB, Léonard A, Hantson Ph (2002) Carcinogenicity mutagenicity and teratogenicity of manganese compounds. Crit Rev Oncol Hematol 42:25–34. https://doi.org/10.1016/S1040-8428(01)00178-0.
González-Montaña JR, Senís E, Alonso AJ, Alonso ME, Alonso MP, Domínguez JC (2019) Some toxic metals (Al. As. Mo. Hg) from cow’s milk raised in a possibly contaminated area by different sources. Environ Sci Pollut Res Int 26:28909–28918. https://doi.org/10.1007/s11356-019-06036-7. (PMID: 10.1007/s11356-019-06036-7)
Gruden N (1987) Cadmium-manganese interaction in the rat’s duodenum. Environ Res 43:19–23. https://doi.org/10.1016/s0013-9351(87)80052-x. (PMID: 10.1016/s0013-9351(87)80052-x)
Güler Z (2007) Levels of 24 minerals in local goat milk, its strained yoghurt and salted yoghurt (tuzlu yoğurt). Small Rumin Res 71:130–137. https://doi.org/10.1016/j.smallrumres.2006.05.011. (PMID: 10.1016/j.smallrumres.2006.05.011)
Hartwig A, Asmuss M, Ehleben I, Herzer U, Kostelac D, Pelzer A, Schwerdtle T, Bürkle A (2002) Interference by toxic metal ions with DNA repair processes and cell cycle control: molecular mechanisms. Environ Health Perspect 110:797–799. https://doi.org/10.1289/ehp.02110s5797. (PMID: 10.1289/ehp.02110s5797)
Hartwig A, Arand M, Epe B, Guth S, Jahnke G, Lampen A, Martus HJ, Monien B, Rietjens IMCM, Schmitz-Spanke S, Schriever-Schwemmer G, Steinberg P, Eisenbrand G (2020) Mode of action-based risk assessment of genotoxic carcinogens. Arch Toxicol 94:1787–1877. https://doi.org/10.1007/s00204-020-02733-2. (PMID: 10.1007/s00204-020-02733-2)
Hei TK, Liu SUX, Waldren C (1998) Mutagenicity of arsenic in mammalian cells: role of reactive oxygen species. Proc Natl Acad Sci USA 95:8103–8107. https://doi.org/10.1073/pnas.95.14.8103. (PMID: 10.1073/pnas.95.14.8103)
Huang D, Zhang Y, Qi Y, Chen C, Ji W (2008) Global DNA hypomethylation, rather than reactive oxygen species (ROS), a potential facilitator of cadmium-stimulated K562 cell proliferation. Toxicol Lett 179:43–47. https://doi.org/10.1016/j.toxlet.2008.03.018. (PMID: 10.1016/j.toxlet.2008.03.018)
Hughes MF (2002) Arsenic toxicity and potential mechanisms of action. Toxicol Lett 133:1–16. https://doi.org/10.1016/s0378-4274(02)00084-x. (PMID: 10.1016/s0378-4274(02)00084-x)
Isaac CP, Sivakumar A, Kumar CR (2011) Lead levels in breast milk, blood plasma and intelligence quotient: a health hazard for women and infants. Bull Environ Contam Toxicol 88:145–149. https://doi.org/10.1007/s00128-011-0475-9. (PMID: 10.1007/s00128-011-0475-9)
Jadhav SH, Sarkar SN, Tripathit HC (2006) Cytogenetic effects of a mixture of selected metals following subchronic exposure through drinking water in male rats. Indian J Exp Biol 44:997–1005.
Kasprzak KS, Sunderman FW Jr, Salnikow K (2003) Nickel carcinogenesis. Mutat Res 533:67–97. https://doi.org/10.1016/j.mrfmmm.2003.08.021. (PMID: 10.1016/j.mrfmmm.2003.08.021)
Kazi TG, Jalbani N, Baig JA, Kandhro GA, Afridi HI, Arain MB, Jamali MK, Shah AQ (2009) Assessment of toxic metals in raw and processed milk samples using electrothermal atomic absorption spectrophotometer. Food Chem Toxicol 47:2163–2169. https://doi.org/10.1016/j.fct.2009.05.035. (PMID: 10.1016/j.fct.2009.05.035)
Kim Y, Kim BN, Hong YC, Shin MS, Yoo HJ, Kim JW, Bhang SY, Cho SC (2009) Co-exposure to environmental lead and manganese affects the intelligence of school-aged children. Neurotoxicology 30:564–571. https://doi.org/10.1016/j.neuro.2009.03.012. (PMID: 10.1016/j.neuro.2009.03.012)
Koedrith P, Kim H, Weon JI, Seo YR (2013) Toxicogenomic approaches for understanding molecular mechanisms of heavy metal mutagenicity and carcinogenicity. Int J Hyg Environ Health 216:587–598. https://doi.org/10.1016/j.ijheh.2013.02.010. (PMID: 10.1016/j.ijheh.2013.02.010)
Kumari S, Sharma S, Advani D, Khosla A, Kumar P, Ambasta RK (2021) Unboxing the molecular modalities of mutagens in cancer. Environ Sci Pollut Res. https://doi.org/10.1007/s11356-021-16726-w.
Langie SA, Koppen G, Desaulniers D et al (2015) Causes of genome instability: the effect of low dose chemical exposures in modern society. Carcinogenesis 36:S61-88. https://doi.org/10.1093/carcin/bgv031. (PMID: 10.1093/carcin/bgv031)
Licata P, Trombetta D, Cristani M, Giofrè F, Martino D, Calò M, Naccari F (2004) Levels of “toxic” and “essential” metals in samples of bovine milk from various dairy farms in Calabria, Italy. Environ Int 30:1–6. https://doi.org/10.1016/S0160-4120(03)00139-9. (PMID: 10.1016/S0160-4120(03)00139-9)
Lieskovska Z, Micuda J (2019) State of the environment report — Slovak Republic 2019. Bratislava. Banská Bystrica: Ministry of Environment of the Slovak Republic. Slovak Environmental Agency. ISBN 978–80–8213–028–0.
Lima PDL, Vasconcellos MC, Bahia MO, Montenegro RC, Pessoa CO, Costa-Lotufo LV, Moraes MO, Burbano RR (2008) Genotoxic and cytotoxic effects of manganese chloride in cultured human lymphocytes treated in different phases of cell cycle. Toxicol In Vitro 22:1032–1037.  https://doi.org/10.1016/j.tiv.2007.12.011.
Lin CC, Chen YC, Su FC, Lin CM, Liao HF, Hwang YH, Hsieh WS, Jeng SF, Su YN, Chen PC (2013) In utero exposure to environmental lead and manganese and neurodevelopment at 2 years of age. Environ Res 123:52–57. https://doi.org/10.1016/j.envres.2013.03.003. (PMID: 10.1016/j.envres.2013.03.003)
Linder MC (2012) The relationship of copper to DNA damage and damage prevention in humans. Mutat Res 733:83–91. https://doi.org/10.1016/j.mrfmmm.2012.03.010. (PMID: 10.1016/j.mrfmmm.2012.03.010)
Løkke H, Ragas AM, Holmstrup M (2013) Tools and perspectives for assessing chemical mixtures and multiple stressors. Toxicology 313:73–82. https://doi.org/10.1016/j.tox.2012.11.009. (PMID: 10.1016/j.tox.2012.11.009)
López AM, Prieto MF, Miranda M, Castillo C, Luis HJ, Benedito J (2004) Interactions between toxic (As. Cd. Hg and Pb) and nutritional essential (Ca. Co., Cr. Cu. Fe. Mn. Mo. Ni. Se. Zn) elements in the tissues of cattle from NW Spain. Biometals 17:389–397. https://doi.org/10.1023/b:biom.0000029434.89679.a2. (PMID: 10.1023/b:biom.0000029434.89679.a2)
Lu C, Svoboda KR, Lenz KA, Pattison C, Ma H (2018) Toxicity interactions between manganese (Mn) and lead (Pb) or cadmium (Cd) in a model organism the nematode C. elegans. Environ Sci Pollut Res 25:15378–15389. https://doi.org/10.1007/s11356-018-1752-5. (PMID: 10.1007/s11356-018-1752-5)
Malhat F, Hagag M, Saber A, Fayz AE (2012) Contamination of cows milk by heavy metal in Egypt. Bull Environ Contam Toxicol 88:611–613. https://doi.org/10.1007/s00128-012-0550-x. (PMID: 10.1007/s00128-012-0550-x)
Martini CN, Sosa FN, Fuchs J, Vila MDC (2020) Effect of lead on proliferation, oxidative stress and genotoxic damage of 3T3-L1 fibroblasts. Toxicol Res (camb) 9:158–163. https://doi.org/10.1093/toxres/tfaa018. (PMID: 10.1093/toxres/tfaa018)
Miedico O, Tarallo M, Pompa C, Chiaravalle AE (2016) Trace elements in sheep and goat milk samples from Apulia and Basilicata regions (Italy): valuation by multivariate data analysis. Small Rumin Res 135:60–65. https://doi.org/10.1016/j.smallrumres.2015.12.019. (PMID: 10.1016/j.smallrumres.2015.12.019)
Muhib MI, Chowdhury MAZ, Easha NJ, Rahman MM, Shammi M, Fardous Z, Bari ML, Uddin MK, Kurasaki M, Alam MK (2016) Investigation of heavy metal contents in cow milk samples from area of Dhaka, Bangladesh. Int J Food Contam 3:16. https://doi.org/10.1186/s40550-016-0039-1. (PMID: 10.1186/s40550-016-0039-1)
Müller J, Sigel RK, Lippert B (2000) Heavy metal mutagenicity: insights from bioinorganic model chemistry. J Inorg Biochem 79:261–265. https://doi.org/10.1016/s0162-0134(99)00179-8. (PMID: 10.1016/s0162-0134(99)00179-8)
Nordberg GF, Andersen O (1981) Metal interactions in carcinogenesis: enhancement, inhibition. Environ Health Perspect 40:65–81. https://doi.org/10.1289/ehp.814065. (PMID: 10.1289/ehp.814065)
Pawlas N, Olewińska E, Markiewicz-Górka I, Kozłowska A, Januszewska L, Lundh T, Januszewska E, Pawlas K (2017) Oxidative damage of DNA in subjects occupationally exposed to lead. Adv Clin Exp Med 26:939–945. https://doi.org/10.17219/acem/64682. (PMID: 10.17219/acem/64682)
Pechova A, Pavlata L (2007) Chromium as an essential nutrient: a review. Vet Med 52(1):18.
Pietrzak-Fiećko R, Kamelska-Sadowska AM (2020) The comparison of nutritional value of human milk with other mammals’ milk. Nutrients 12:1404. https://doi.org/10.3390/nu12051404. (PMID: 10.3390/nu12051404)
Pilarczyk R, Wójcik J, Czerniak P, Sablik P, Pilarczyk B, Tomza-Marciniak A (2013) Concentrations of toxic heavy metals and trace elements in raw milk of Simmental and Holstein-Friesian cows from organic farm. Environ Monit Assess 185:8383–8392. https://doi.org/10.1007/s10661-013-3180-9. (PMID: 10.1007/s10661-013-3180-9)
Prá D, Franke SI, Giulian R, Yoneama ML, Dias JF, Erdtmann B, Henriques JA (2008) Genotoxicity and mutagenicity of iron and copper in mice. Biometals 21:289–297. https://doi.org/10.1007/s10534-007-9118-3. (PMID: 10.1007/s10534-007-9118-3)
Psenkova M, Toman R (2021) Determination of essential and toxic elements in raw sheep's milk from area of Slovakia with environmental burden. Biol Trace Elem Res 199:3338–3344. https://doi.org/10.1007/s12011-020-02452-w.
Psenkova M, Toman R, Tancin V (2020) Concentrations of toxic metals and essential elements in raw cow milk from areas with potentially undisturbed and highly disturbed environment in Slovakia. Environ Sci Pollut Res 27:26763–26772. https://doi.org/10.1007/s11356-020-09093-5. (PMID: 10.1007/s11356-020-09093-5)
Rahimi E (2013) Lead and cadmium concentrations in goat, cow, sheep, and buffalo milks from different regions of Iran. Food Chem 136:389–391. https://doi.org/10.1016/j.foodchem.2012.09.016. (PMID: 10.1016/j.foodchem.2012.09.016)
RezaeiDastjerdi MHA, Jafari H, Farahi A, Shahabi A, Javdani H, Teimoory H, Yahyaei M, Malekirad A (2014) Assessment of dairy products consumed on the Arakmarket as determined by heavy metal residues. Health 6:323–327. https://doi.org/10.4236/health.2014.65047. (PMID: 10.4236/health.2014.65047)
Ribeiro Sant’Ana MA, de Carvalho TC, da Silva IF (2021) Concentration of heavy metals in UHT dairy milk available in the markets of São Luís, Brazil, and potential health risk to children. Food Chem 346:128961. https://doi.org/10.1016/j.foodchem.2020.128961. (PMID: 10.1016/j.foodchem.2020.128961)
Rodríguez Rodríguez EM, Sanz AM, Díaz Romero C (1999) Chemometric studies of several minerals in milks. J Agric Food Chem 47:1520–1524. https://doi.org/10.1021/jf980552p. (PMID: 10.1021/jf980552p)
Saito S, Yamauchi H, Yoshida K (2004) Interactions of arsenic with fluorine, selenium, barium, and strontium in human hepatic cells. Bull Environ Contam Toxicol 73:139–145. https://doi.org/10.1007/s00128-004-0405-1. (PMID: 10.1007/s00128-004-0405-1)
Salihaj M, Bani A, Feidt C, Echevarria G (2017) The nickel concentration in raw milk obtained from cows grazing serpentine pastures. Thalassia Sal 39:137–146. https://doi.org/10.1285/i15910725v39p137. (PMID: 10.1285/i15910725v39p137)
Sanal H, Güler Z, Park YW (2011) Profiles of non-essential trace elements in ewe and goat milk and their yoghurt, Torba yoghurt and whey. Food Addit Contam Part B Surveill 4:275–281. https://doi.org/10.1080/19393210.2011.617520. (PMID: 10.1080/19393210.2011.617520)
Saribal D (2020) ICP-MS analysis of trace element concentrations in cow’s milk samples from supermarkets in Istanbul, Turkey. Biol Trace Elem Res 193:166–173. https://doi.org/10.1007/s12011-019-01708-4. (PMID: 10.1007/s12011-019-01708-4)
Scher DP, Goeden HM, Klos KS (2021) Potential for manganese-induced neurologic harm to formula-fed infants: A risk assessment of total oral exposure. Environ Health Perspect 129:47011. https://doi.org/10.1289/EHP7901. (PMID: 10.1289/EHP7901)
Sikirić MD, Brajenović N, Pavlović I, Havranek JJ, Plavljanić N (2003) Determination of metals in cow’s milk by flame atomic absorption spectrophotometry. Czech J Anim Sci 48:481–486.
Simonsen LO, Harbak H, Bennekou P (2012) Cobalt metabolism and toxicology—a brief update. Sci Total Environ 432:210–215. https://doi.org/10.1016/j.scitotenv.2012.06.009. (PMID: 10.1016/j.scitotenv.2012.06.009)
Simsek O, Gültekin R, Öksüz O, Kurultay S (2000) The effect of environmental pollution on the heavy metal content of raw milk. Nahrung 44:360–363. https://doi.org/10.1002/1521-3803(20001001)44:5%3c360::AID-FOOD360%3e3.0.CO;2-G. (PMID: 10.1002/1521-3803(20001001)44:5<360::AID-FOOD360>3.0.CO;2-G)
Solis C, Isaac-Olive K, Mireles A, Vidal-Hernandez M (2009) Determination of trace metals in cow’s milk from waste water irrigated areas in Central Mexico by chemical treatment coupled to PIXE. Microchem J 91:9–12. https://doi.org/10.1016/j.microc.2008.06.001. (PMID: 10.1016/j.microc.2008.06.001)
Son YO (2020) Molecular mechanisms of nickel-induced carcinogenesis. Endocr Metab Immune Disord Drug Targets 20:1015–1023. https://doi.org/10.2174/1871530319666191125112728. (PMID: 10.2174/1871530319666191125112728)
Stawarz R, Formicki G, Massányi P (2007) Daily fluctuations and distribution of xenobiotics, nutritional and biogenic elements in human milk in Southern Poland. J Environ Sci Health A Tox Hazard Subst Environ Eng 42:1169–1175. https://doi.org/10.1080/10934520701418680. (PMID: 10.1080/10934520701418680)
Stergiadis S, Nørskov NP, Purup S, Givens I, Lee MRF (2019) Comparative nutrient profiling of retail goat and cow milk. Nutrients 11:2282. https://doi.org/10.3390/nu11102282. (PMID: 10.3390/nu11102282)
Sun WC, Luo YH, Ma HQ (2011) Preliminary study of metal in yak (Bos grunniens) milk from Qilian of the Qinghai plateau. Bull Environ Contam Toxicol 86:653–656. https://doi.org/10.1007/s00128-011-0282-3.
Sun HJ, Rathinasabapathi B, Wu B, Luo J, Pu LP, Ma LQ (2014) Arsenic and selenium toxicity and their interactive effects in humans. Environ Int 69:148–158. https://doi.org/10.1016/j.envint.2014.04.019. (PMID: 10.1016/j.envint.2014.04.019)
Tahir M, Iqbal M, Abbas M, Tahir MA, Nazir A, Iqbal DN, Kanwal Q, Hassan F, Younas U (2017) Comparative study of heavy metals distribution in soil, forage, blood and milk. Acta Ecol Sin 37:207–212. https://doi.org/10.1016/j.chnaes.2016.10.007. (PMID: 10.1016/j.chnaes.2016.10.007)
Terpilowska S, Siwicki AK (2019) Pro- and antioxidant activity of chromium(III) iron(III) molybdenum(III) or nickel(II) and their mixtures. Chem Biol Interact 298:43–51.  https://doi.org/10.1016/j.cbi.2018.10.028.
Toman R, Psenkova M, Tancin V (2020) The occurrence of eleven elements in dairy cow´s milk, feed, and soil from three different regions of Slovakia. Potr S J F Sci 14:967–977. https://doi.org/10.5219/1461. (PMID: 10.5219/1461)
Totan FE, Filazi A (2020) Determination of some element levels in various kinds of cow’s milk processed in different ways. Environ Monit Assess 192:112. https://doi.org/10.1007/s10661-020-8088-6. (PMID: 10.1007/s10661-020-8088-6)
Toyokuni S (1996) Iron-induced carcinogenesis: the role of redox regulation. Free Radic Biol Med 20:553–566. https://doi.org/10.1016/0891-5849(95)02111-6. (PMID: 10.1016/0891-5849(95)02111-6)
Tsao YC, Gu PW, Liu SH, Tzeng IS, Chen JY, Luo JJ (2016) Nickel exposure and plasma levels of biomarkers for assessing oxidative stress in nickel electroplating workers. Biomarkers 22:455–460. https://doi.org/10.1080/1354750X.2016.1252964. (PMID: 10.1080/1354750X.2016.1252964)
Ubani-Rex OA, Saliu JK, Bello TH (2017) Biochemical effects of the toxic interaction of copper, lead and cadmium on Clarias gariepinus. J Health Pollut 7:38–48. https://doi.org/10.5696/2156-9614-7.16.38. (PMID: 10.5696/2156-9614-7.16.38)
Valko M, Morris H, Cronin MT (2005) Metals, toxicity and oxidative stress. Curr Med Chem 12:1161–1208. https://doi.org/10.2174/0929867053764635. (PMID: 10.2174/0929867053764635)
Vincent JB (2017) New evidence against chromium as an essential trace element. J Nutr 147:2212–2219.  https://doi.org/10.3945/jn.117.255901.
Vincent JB, Lukaski HC (2018) Chromium. Adv Nutr 9:505–506. https://doi.org/10.1093/advances/nmx021.
Whanger PD (2004) Selenium and its relationship to cancer: an update. Br J Nutr 91:11–28. https://doi.org/10.1079/bjn20031015. (PMID: 10.1079/bjn20031015)
Wu X, Cobbina SJ, Mao G, Xu H, Zhang Z, Yang L (2016) A review of toxicity and mechanisms of individual and mixtures of heavy metals in the environment. Environ Sci Pollut Res Int 23:8244–8259. https://doi.org/10.1007/s11356-016-6333-x. (PMID: 10.1007/s11356-016-6333-x)
Zhou X, Qu X, Zhao S, Wang J, Li S, Zheng N (2017) Analysis of 22 elements in milk, feed, and water of dairy cow, goat, and buffalo from different regions of China. Biol Trace Elem Res 76:120–129. https://doi.org/10.1007/s12011-016-0819-8. (PMID: 10.1007/s12011-016-0819-8)
Zwolak I (2020) The role of selenium in arsenic and cadmium toxicity: an updated review of scientific literature. Biol Trace Elem Res 193:44-63. https://doi.org/10.1007/s12011-019-01691-w.
Grant Information:
APVV-18-0227 agentúra na podporu výskumu a vývoja
Contributed Indexing:
Keywords: Chemical elements; Ewe milk; Heavy metal contamination; Mutagens; Orava region; Slovakia
Substance Nomenclature:
0 (Metals, Heavy)
0 (Mutagens)
00BH33GNGH (Cadmium)
2P299V784P (Lead)
Entry Date(s):
Date Created: 20220523 Date Completed: 20220913 Latest Revision: 20220913
Update Code:
20240105
DOI:
10.1007/s11356-022-20871-1
PMID:
35604602
Czasopismo naukowe
The aim of this work was to determine the concentrations of selected mutagenic elements (As, Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb, and Se) in raw ewe milk from undisturbed environment in Orava region, northern Slovakia. There are possible sources of some of the analyzed metals which may be distributed from the metallurgical plants located in the Ostrava region, Czech Republic, and Katowice, Poland. In total, forty milk samples were analyzed in June and August using an inductively coupled plasma optical emission spectrometry. The differences in elements concentrations between the seasonal periods were not significant except of iron (p < 0.0001). The concentrations of most of the metals in ewe milk were low and under the permissible or recommended limits. However, arsenic and selenium concentrations were elevated and could pose a risk of the mutagenic effect, particularly in children. The frequency of element occurrence in June was as follows: Se > Fe > As > Cu > Mn > Ni > Co > Pb > Cr > Cd, and in August: Se > Fe = As > Cu > Mn > Pb > Co > Ni > Cr > Cd. The correlation analysis revealed very strong positive correlation between Cu:Pb (p < 0.05), very strong negative correlation between Fe:Se (p < 0.05). The strong correlations were also found between other elements. The present study showed that milk produced in the relatively undisturbed environment might contain various mutagenic elements. The relationships between the elements might result in the additive or synergistic effects of elements and increase the risk of their mutagenic effects even in low concentrations. Therefore, attention must be paid to the monitoring of metals in the areas where food sources destined especially for child nutrition are produced.
(© 2022. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.)

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies