Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Achieving High Thermoelectric Performance of Eco-Friendly SnTe-Based Materials by Selective Alloying and Defect Modulation.

Tytuł:
Achieving High Thermoelectric Performance of Eco-Friendly SnTe-Based Materials by Selective Alloying and Defect Modulation.
Autorzy:
Abbas A; Shenzhen Key Laboratory of Advanced Thin Films and Applications, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, P. R. China.
Nisar M; Shenzhen Key Laboratory of Advanced Thin Films and Applications, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, P. R. China.
Zheng ZH; Shenzhen Key Laboratory of Advanced Thin Films and Applications, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, P. R. China.
Li F; Shenzhen Key Laboratory of Advanced Thin Films and Applications, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, P. R. China.
Jabar B; Shenzhen Key Laboratory of Advanced Thin Films and Applications, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, P. R. China.
Liang G; Shenzhen Key Laboratory of Advanced Thin Films and Applications, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, P. R. China.
Fan P; Shenzhen Key Laboratory of Advanced Thin Films and Applications, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, P. R. China.
Chen YX; Shenzhen Key Laboratory of Advanced Thin Films and Applications, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, P. R. China.
Źródło:
ACS applied materials & interfaces [ACS Appl Mater Interfaces] 2022 Jun 08; Vol. 14 (22), pp. 25802-25811. Date of Electronic Publication: 2022 May 24.
Typ publikacji:
Journal Article
Język:
English
Imprint Name(s):
Original Publication: Washington, D.C. : American Chemical Society
Contributed Indexing:
Keywords: SnTe; carrier optimization; polycrystalline; thermoelectric; transport properties
Entry Date(s):
Date Created: 20220524 Latest Revision: 20220609
Update Code:
20240105
DOI:
10.1021/acsami.2c05691
PMID:
35609239
Czasopismo naukowe
Recently, rock-salt lead-free chalcogenide SnTe-based thermoelectric (TE) materials have been considered an alternative to PbTe because of the nontoxic properties of Sn as compared to Pb. However, high carrier concentration that originated from intrinsic Sn vacancies and relatively high thermal conductivity of pristine SnTe lead to poor TE efficiency, which makes room for improving its TE properties. In this study, we present that the Na incorporation into the SnTe matrix is helpful for modifying the electronic band structure, optimization of carrier concentration, introducing dislocations, and kink planes; benefiting from these synergistic effects obviates the disadvantages of SnTe and makes a significant improvement in TE performance. We reveal that Na favorably impacts the structure of electronic bands by valence, conduction band engineering, leading to a nice enhancement in the Seebeck coefficient, which exhibits the highest power factor value of 37.93 μWcm -1 K -2 at 898 K, representing the best result for the SnTe material system. Moreover, a broader phonon spectrum is introduced by new phonon-scattering centers, scattered by dislocations and kink planes which suppressed lattice thermal conductivity to 0.57 Wm -1 K -1 at 898 K, which is much lower than that of pristine SnTe. Ultimately, a maximum ZT of 1.26 at 898 K is achieved in the Sn 1.03 Te + 3% Na sample, which is 97% higher than that of the pristine SnTe, suggesting that SnTe-based materials are a robust candidate for TE applications specifically, an ideal alternative of lead chalcogenides for TE power generation at high temperatures.

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies