Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Dietary emulsifier consumption alters gene expression in the amygdala and paraventricular nucleus of the hypothalamus in mice.

Tytuł:
Dietary emulsifier consumption alters gene expression in the amygdala and paraventricular nucleus of the hypothalamus in mice.
Autorzy:
Arnold AR; Neuroscience Institute, Georgia State University, Atlanta, GA, 30303, USA.
Chassaing B; INSERM U1016, Team 'Mucosal Microbiota in Chronic Inflammatory Diseases', CNRS UMR 8104, Université de Paris, Paris, France. .
Pearce BD; Department of Epidemiology, Emory University Rollins School of Public Health, 1518 Clifton Rd NE, Atlanta, GA, 30322, USA.
Huhman KL; Neuroscience Institute, Georgia State University, Atlanta, GA, 30303, USA. .
Źródło:
Scientific reports [Sci Rep] 2022 Jun 01; Vol. 12 (1), pp. 9146. Date of Electronic Publication: 2022 Jun 01.
Typ publikacji:
Journal Article; Research Support, Non-U.S. Gov't; Research Support, N.I.H., Extramural
Język:
English
Imprint Name(s):
Original Publication: London : Nature Publishing Group, copyright 2011-
MeSH Terms:
Amygdala*
Paraventricular Hypothalamic Nucleus*/metabolism
Animals ; Diet ; Emulsifying Agents ; Gene Expression ; Mice
References:
Miller, A. H. Beyond depression: The expanding role of inflammation in psychiatric disorders. World Psychiatry 19(1), 108–109 (2020). (PMID: 31922681695359010.1002/wps.20723)
Kim, J. et al. A double-hit of stress and low-grade inflammation on functional brain network mediates posttraumatic stress symptoms. Nat. Commun. 11(1), 1898 (2020). (PMID: 32313055717109710.1038/s41467-020-15655-5)
Haroon, E., Raison, C. L. & Miller, A. H. Psychoneuroimmunology meets neuropsychopharmacology: Translational implications of the impact of inflammation on behavior. Neuropsychopharmacology 37(1), 137–162 (2012). (PMID: 2191850810.1038/npp.2011.205)
Slavich, G. M. & Irwin, M. R. From stress to inflammation and major depressive disorder: A social signal transduction theory of depression. Psychol. Bull. 140(3), 774–815 (2014). (PMID: 24417575400629510.1037/a0035302)
Berk, M. et al. So depression is an inflammatory disease, but where does the inflammation come from?. BMC Med. 11, 1–16 (2013). (PMID: 10.1186/1741-7015-11-200)
Chassaing, B. et al. Dietary emulsifiers impact the mouse gut microbiota promoting colitis and metabolic syndrome. Nature 519(7541), 92–96 (2015). (PMID: 25731162491071310.1038/nature14232)
Holder, M. K. et al. Dietary emulsifiers consumption alters anxiety-like and social-related behaviors in mice in a sex-dependent manner. Sci. Rep. 9(1), 172 (2019). (PMID: 30655577633678710.1038/s41598-018-36890-3)
Viennois, E. et al. Dietary emulsifier-induced low-grade inflammation promotes colon carcinogenesis. Cancer Res. 77(1), 27–40 (2017). (PMID: 2782148510.1158/0008-5472.CAN-16-1359)
DeMorrow, S. Role of the hypothalamic-pituitary-adrenal axis in health and disease. Int. J. Mol. Sci. 19(4), 986 (2018). (PMID: 597957810.3390/ijms19040986)
Silverman, M. N. et al. Immune modulation of the hypothalamic-pituitary-adrenal (HPA) axis during viral infection. Viral Immunol. 18(1), 41–78 (2005). (PMID: 1580295310.1089/vim.2005.18.41)
Farzi, A., Frohlich, E. E. & Holzer, P. Gut microbiota and the neuroendocrine system. Neurotherapeutics 15(1), 5–22 (2018). (PMID: 29380303579470910.1007/s13311-017-0600-5)
de Punder, K. & Pruimboom, L. Stress induces endotoxemia and low-grade inflammation by increasing barrier permeability. Front. Immunol. 6, 223 (2015). (PMID: 26029209443279210.3389/fimmu.2015.00223)
Ait-Belgnaoui, A. et al. Prevention of gut leakiness by a probiotic treatment leads to attenuated HPA response to an acute psychological stress in rats. Psychoneuroendocrinology 37(11), 1885–1895 (2012). (PMID: 2254193710.1016/j.psyneuen.2012.03.024)
Fillman, S. G. et al. Markers of inflammation and stress distinguish subsets of individuals with schizophrenia and bipolar disorder. Transl. Psychiatry 4, e365 (2014). (PMID: 24569695394463810.1038/tp.2014.8)
Menard, C. et al. Immune and neuroendocrine mechanisms of stress vulnerability and resilience. Neuropsychopharmacology 42(1), 62–80 (2017). (PMID: 2729146210.1038/npp.2016.90)
Chen, E. Y. et al. Enrichr: Interactive and collaborative HTML5 gene list enrichment analysis tool. BMC Bioinform. 14, 128 (2013). (PMID: 10.1186/1471-2105-14-128)
Kuleshov, M. V. et al. Enrichr: A comprehensive gene set enrichment analysis web server 2016 update. Nucleic Acids Res. 44(W1), W90–W97 (2016). (PMID: 27141961498792410.1093/nar/gkw377)
Xie, Z. et al. Gene set knowledge discovery with enrichr. Curr. Protoc. 1(3), e90 (2021). (PMID: 33780170815257510.1002/cpz1.90)
Murphy, E. P. & Conneely, O. M. Neuroendocrine regulation of the hypothalamic pituitary adrenal axis by the nurr1/nur77 subfamily of nuclear receptors. Mol. Endocrinol. 11(1), 39–47 (1997). (PMID: 899418610.1210/mend.11.1.9874)
Anacker, C. et al. Role for the kinase SGK1 in stress, depression, and glucocorticoid effects on hippocampal neurogenesis. Proc. Natl. Acad. Sci. USA 110(21), 8708–8713 (2013). (PMID: 23650397366674210.1073/pnas.1300886110)
Dattilo, V. et al. The emerging role of SGK1 (Serum- and Glucocorticoid-Regulated Kinase 1) in major depressive disorder: Hypothesis and mechanisms. Front. Genet. 11, 826 (2020). (PMID: 32849818741962110.3389/fgene.2020.00826)
Watts, A. G., Sanchez-Watts, G. & Kelly, A. B. Distinct patterns of neuropeptide gene expression in the lateral hypothalamic area and arcuate nucleus are associated with dehydration-induced anorexia. J. Neurosci. 19(14), 6111–6121 (1999). (PMID: 10407047678309010.1523/JNEUROSCI.19-14-06111.1999)
Singewald, N. Altered brain activity processing in high-anxiety rodents revealed by challenge paradigms and functional mapping. Neurosci. Biobehav. Rev. 31(1), 18–40 (2007). (PMID: 1662098410.1016/j.neubiorev.2006.02.003)
Murphy, E. P. et al. Involvement of the nuclear orphan receptor NURR1 in the regulation of corticotropin-releasing hormone expression and actions in human inflammatory arthritis. Arthritis Rheum. 44(4), 782–793 (2001). (PMID: 1131591710.1002/1529-0131(200104)44:4<782::AID-ANR134>3.0.CO;2-H)
Helbling, J. C. et al. Stress and glucocorticoid regulation of NR4A genes in mice. J. Neurosci. Res. 92(7), 825–834 (2014). (PMID: 2475320410.1002/jnr.23366)
Kuehner, C. et al. PCLO rs2522833 impacts HPA system activity in healthy young adults. Transl. Psychiatry 1, e10 (2011). (PMID: 22832399330948010.1038/tp.2011.11)
Lang, F. et al. Significance of SGK1 in the regulation of neuronal function. J. Physiol. 588(Pt 18), 3349–3354 (2010). (PMID: 20530112298850110.1113/jphysiol.2010.190926)
Chassaing, B. et al. Dietary emulsifiers directly alter human microbiota composition and gene expression ex vivo potentiating intestinal inflammation. Gut 66(8), 1414–1427 (2017). (PMID: 2832574610.1136/gutjnl-2016-313099)
Nie, X. et al. The innate immune receptors TLR2/4 mediate repeated social defeat stress-induced social avoidance through prefrontal microglial activation. Neuron 99(3), 464–479.e7 (2018). (PMID: 3003315410.1016/j.neuron.2018.06.035)
Chen, Q. et al. Cyclooxygenase-2 signalling pathway in the cortex is involved in the pathophysiological mechanisms in the rat model of depression. Sci. Rep. 7(1), 488 (2017). (PMID: 28352129542881710.1038/s41598-017-00609-7)
Morgan, A. et al. Cyclooxygenase-2 inhibition reduces anxiety-like behavior and normalizes enhanced amygdala glutamatergic transmission following chronic oral corticosterone treatment. Neurobiol. Stress 11, 100190 (2019). (PMID: 31467944671055910.1016/j.ynstr.2019.100190)
Calandra, T. & Bucala, R. Macrophage migration inhibitory factor (MIF): A glucocorticoid counter-regulator within the immune system. Crit. Rev. Immunol. 37(2–6), 359–370 (2017). (PMID: 2977302610.1615/CritRevImmunol.v37.i2-6.90)
Conboy, L. et al. Macrophage migration inhibitory factor is critically involved in basal and fluoxetine-stimulated adult hippocampal cell proliferation and in anxiety, depression, and memory-related behaviors. Mol. Psychiatry 16(5), 533–547 (2011). (PMID: 2017740810.1038/mp.2010.15)
Bacher, M. et al. MIF expression in the rat brain: Implications for neuronal function. Mol. Med. 4(4), 217–230 (1998). (PMID: 9606175223036710.1007/BF03401919)
Dilling, C. et al. Multiple protocadherins are expressed in brain microvascular endothelial cells and might play a role in tight junction protein regulation. J. Cereb. Blood Flow Metab. 37(10), 3391–3400 (2017). (PMID: 28094605562438910.1177/0271678X16688706)
Zhu, W. et al. Interleukin receptor activates a MYD88-ARNO-ARF6 cascade to disrupt vascular stability. Nature 492(7428), 252–255 (2012). (PMID: 23143332352184710.1038/nature11603)
Alkabie, S. et al. SPARC expression by cerebral microvascular endothelial cells in vitro and its influence on blood-brain barrier properties. J. Neuroinflamm. 13(1), 225 (2016). (PMID: 10.1186/s12974-016-0657-9)
Najjar, S. et al. Neurovascular unit dysfunction with blood-brain barrier hyperpermeability contributes to major depressive disorder: A review of clinical and experimental evidence. J. Neuroinflamm. 10, 142 (2013). (PMID: 10.1186/1742-2094-10-142)
McCann, K. E. et al. Transcriptomic analysis reveals sex-dependent expression patterns in the basolateral amygdala of dominant and subordinate animals after acute social conflict. Mol. Neurobiol. 56(5), 3768–3779 (2019). (PMID: 3019639510.1007/s12035-018-1339-7)
Bromet, E. et al. Cross-national epidemiology of DSM-IV major depressive episode. BMC Med. 9, 90 (2011). (PMID: 21791035316361510.1186/1741-7015-9-90)
Hayter, S. M. & Cook, M. C. Updated assessment of the prevalence, spectrum and case definition of autoimmune disease. Autoimmun. Rev. 11(10), 754–765 (2012). (PMID: 2238797210.1016/j.autrev.2012.02.001)
Elderman, M., de Vos, P. & Faas, M. Role of microbiota in sexually dimorphic immunity. Front. Immunol. 9, 1018 (2018). (PMID: 29910797599242110.3389/fimmu.2018.01018)
Zhang, Z. H. et al. A comparative study of techniques for differential expression analysis on RNA-Seq data. PLoS ONE 9(8), e103207 (2014). (PMID: 25119138413209810.1371/journal.pone.0103207)
Sugino, K. et al. Mapping the transcriptional diversity of genetically and anatomically defined cell populations in the mouse brain. Elife 8, e38619 (2019). (PMID: 30977723649954210.7554/eLife.38619)
Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 9(4), 357–359 (2012). (PMID: 22388286332238110.1038/nmeth.1923)
Trapnell, C. et al. Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks. Nat. Protoc. 7(3), 562–578 (2012). (PMID: 22383036333432110.1038/nprot.2012.016)
Trapnell, C. et al. Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat. Biotechnol. 28(5), 511–515 (2010). (PMID: 20436464314604310.1038/nbt.1621)
Reiner, A., Yekutieli, D. & Benjamini, Y. Identifying differentially expressed genes using false discovery rate controlling procedures. Bioinformatics 19(3), 368–375 (2003). (PMID: 1258412210.1093/bioinformatics/btf877)
McDermaid, A. et al. Interpretation of differential gene expression results of RNA-seq data: Review and integration. Brief Bioinform. 20(6), 2044–2054 (2019). (PMID: 3009948410.1093/bib/bby067)
Cinar, M. U. et al. Evaluation of suitable reference genes for gene expression studies in porcine alveolar macrophages in response to LPS and LTA. BMC Res. Notes 5, 107 (2012). (PMID: 22340302330627110.1186/1756-0500-5-107)
Grant Information:
ERC-2018-StG- 804135 International ERC_ European Research Council; MH62044 United States NH NIH HHS
Substance Nomenclature:
0 (Emulsifying Agents)
Entry Date(s):
Date Created: 20220601 Date Completed: 20220603 Latest Revision: 20221113
Update Code:
20240105
PubMed Central ID:
PMC9159048
DOI:
10.1038/s41598-022-13021-7
PMID:
35650224
Czasopismo naukowe
Dietary emulsifier consumption promotes systemic low-grade inflammation, metabolic deregulation, and possibly an anxiety-like phenotype. The latter finding suggests that dietary emulsifiers impact brain areas that modulate stress responses. The goal of the current study was to test whether emulsifier consumption is associated with changes in gene expression in the amygdala and the paraventricular nucleus of the hypothalamus (PVN), two brain areas that are involved in behavioral and neuroendocrine responses to stress. Using RNA-Seq, we compared groups consuming either carboxymethylcellulose or polysorbate 80 for 12-weeks. A total of 243 genes were differentially expressed in the amygdala and PVN of emulsifier-treated mice compared to controls. There was minimal overlap of differentially expressed genes in CMC- and P80-treated animals, suggesting that each emulsifier acts via distinct molecular mechanisms to produce an anxiety-like phenotype. Furthermore, gene ontology and pathway analysis revealed that various stress, metabolic, and immune terms and pathways were altered by emulsifiers. These findings are the first to demonstrate that emulsifier consumption changes gene expression in brain regions that are critical for stress responding, providing possible molecular mechanisms that may underly the previously observed anxiety-like phenotype.
(© 2022. The Author(s).)
Zaloguj się, aby uzyskać dostęp do pełnego tekstu.

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies