Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

VaMYB44 transcription factor from Chinese wild Vitis amurensis negatively regulates cold tolerance in transgenic Arabidopsis thaliana and V. vinifera.

Tytuł:
VaMYB44 transcription factor from Chinese wild Vitis amurensis negatively regulates cold tolerance in transgenic Arabidopsis thaliana and V. vinifera.
Autorzy:
Zhang H; College of Horticulture, Northwest A&F University, Yangling, Xianyang, 712100, Shaanxi, China.; Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, Xianyang, 712100, Shaanxi, China.; State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, Xianyang, 712100, Shaanxi, China.
Hu Y; College of Horticulture, Northwest A&F University, Yangling, Xianyang, 712100, Shaanxi, China.; Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, Xianyang, 712100, Shaanxi, China.; State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, Xianyang, 712100, Shaanxi, China.
Gu B; College of Horticulture, Northwest A&F University, Yangling, Xianyang, 712100, Shaanxi, China.; Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, Xianyang, 712100, Shaanxi, China.; State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, Xianyang, 712100, Shaanxi, China.
Cui X; College of Horticulture, Northwest A&F University, Yangling, Xianyang, 712100, Shaanxi, China.; Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, Xianyang, 712100, Shaanxi, China.; State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, Xianyang, 712100, Shaanxi, China.
Zhang J; College of Horticulture, Northwest A&F University, Yangling, Xianyang, 712100, Shaanxi, China. .; Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, Xianyang, 712100, Shaanxi, China. .; State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, Xianyang, 712100, Shaanxi, China. .
Źródło:
Plant cell reports [Plant Cell Rep] 2022 Aug; Vol. 41 (8), pp. 1673-1691. Date of Electronic Publication: 2022 Jun 06.
Typ publikacji:
Journal Article
Język:
English
Imprint Name(s):
Original Publication: Berlin ; New York : Springer, 1981-
MeSH Terms:
Arabidopsis*/metabolism
Vitis*/metabolism
China ; Cold-Shock Response ; Gene Expression Regulation, Plant ; Plant Proteins/genetics ; Plant Proteins/metabolism ; Plants, Genetically Modified/genetics ; Transcription Factors/genetics ; Transcription Factors/metabolism
References:
Amin B, Atif MJ, Meng H, Ghani MI, Ali M, Wang X, Cheng Z (2022) Biochemical and physiological responses of Cucumis sativus cultivars to different combinations of low-temperature and high humidity. J Plant Growth Regul. https://doi.org/10.1007/s00344-021-10556-3. (PMID: 10.1007/s00344-021-10556-3)
An D, Ma Q, Wang H, Yang J, Zhou W, Zhang P (2017) Cassava C-repeat binding factor 1 gene responds to low temperature and enhances cold tolerance when overexpressed in Arabidopsis and cassava. Plant Mol Biol 94:109–124. https://doi.org/10.1007/s11103-017-0596-6. (PMID: 10.1007/s11103-017-0596-628258553)
An JP, Li R, Qu FJ, You X, Wang XF, Hao YJ (2018) R2R3-MYB transcription factor MdMYB23 is involved in the cold tolerance and proanthocyanidin accumulation in apple. Plant J 96:562577. https://doi.org/10.1111/tpj.14050. (PMID: 10.1111/tpj.14050)
Araz O, Ekinci M, Yuce M, Shams M, Agar G, Yildirim E (2022) Low-temperature modified DNA methylation level, genome template stability, enzyme activity, and proline content in pepper (Capsicum annuum L) genotypes. Sci Hortic 294:110761. https://doi.org/10.1016/j.scienta.2021.110761. (PMID: 10.1016/j.scienta.2021.110761)
Bagni N, Tassoni A (2001) Biosynthesis, oxidation and conjugation of aliphatic polyamines in higher plants. Amino Acids 20:301–317. https://doi.org/10.1007/s007260170046. (PMID: 10.1007/s00726017004611354606)
Bates LS, Waldren RP, Teare I (1973) Rapid determination of free proline for water-stress studies. Plant Soil 39:205–207. https://doi.org/10.1007/bf00018060. (PMID: 10.1007/bf00018060)
Burnette WN (1981) “Western blotting”: electrophoretic transfer of proteins from sodium dodecyl sulfate-polyacrylamide gels to unmodified nitrocellulose and radiographic detection with antibody and radioiodinated protein. Anal Biochem 112:195–203. https://doi.org/10.1016/0003-2697(81)90281-5. (PMID: 10.1016/0003-2697(81)90281-56266278)
Campos PS, Quartin V, Ramalho CJ, Nunes MA (2003) Electrolyte leakage and lipid degradation account for cold sensitivity in leaves of Coffea sp. plants. J Plant Physio 160:283–292. https://doi.org/10.1078/0176-1617-00833. (PMID: 10.1078/0176-1617-00833)
Chance B, Maehly AC (1955) Assay catalases and peroxidases. Methods Enzymol 2:764–775. https://doi.org/10.1016/S0076-6879(55)02300-8. (PMID: 10.1016/S0076-6879(55)02300-8)
Chen JR, Lü JJ, Liu R, Xiong XY, Wang TX, Chen SY, Guo LB, Wang HF (2010) DREB1C from Medicago truncatula enhances freezing tolerance in transgenic M. truncatula and China Rose (Rosa chinensis Jacq.). Plant Growth Regul 60:199–211. https://doi.org/10.1007/s10725-009-9434-4. (PMID: 10.1007/s10725-009-9434-4)
Chinnusamy V, Zhu J, Zhu JK (2007) Cold stress regulation of gene expression in plants. Trends Plant Sci 12:444–451. https://doi.org/10.1016/j.tplants.2007.07.002. (PMID: 10.1016/j.tplants.2007.07.00217855156)
Clough SJ, Bent AF (1998) Floral dip: a simplified method for agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16:735–743. https://doi.org/10.1046/j.1365-313x.1998.00343.x. (PMID: 10.1046/j.1365-313x.1998.00343.x10069079)
Dai ZN, Dong SY, Miao H, Liu XP, Han JN, Li CX, Gu XF, Zhang SP (2022) Genome-wide identification of TIFY genes and their response to various pathogen infections in cucumber (Cucumis sativus L.). Sci Hortic 295:110814. https://doi.org/10.1016/j.scienta.2021.110814. (PMID: 10.1016/j.scienta.2021.110814)
Das K, Roychoudhury A (2014) Reactive oxygen species (ROS) and response of antioxidants as ROS-scavengers during environmental stress in plants. Front Environ Sci 2:53. https://doi.org/10.3389/fenvs.2014.00053. (PMID: 10.3389/fenvs.2014.00053)
Ding YL, Li H, Zhang XY, Xie Q, Gong ZZ, Yang SH (2015) OST1 kinase modulates freezing tolerance by enhancing ICE1 stability in Arabidopsis. Dev Cell 32:278–289. https://doi.org/10.1016/j.devcel.2014.12.023. (PMID: 10.1016/j.devcel.2014.12.02325669882)
Ding YL, Shi YT, Yang SH (2019) Advances and challenges in uncovering cold tolerance regulatory mechanisms in plants. New Phytol 222:1690–1704. https://doi.org/10.1111/nph.15696. (PMID: 10.1111/nph.1569630664232)
Ding F, Wang C, Xu N, Wang ML, Zhang SX (2021) Jasmonic acid-regulated putrescine biosynthesis attenuates cold-induced oxidative stress in tomato plants. Sci Hortic 288:110373. https://doi.org/10.1016/j.scienta.2021.110373. (PMID: 10.1016/j.scienta.2021.110373)
Du H, Zhang L, Liu L, Tang XF, Yang WJ, Wu YM, Huang YB, Tang YX (2009) Biochemical and molecular characterization of plant MYB transcription factor family. Biochemistry Biokhimiia 74:1–11. https://doi.org/10.1134/s0006297909010015. (PMID: 10.1134/s000629790901001519232042)
Eremina M, Rozhon W, Poppenberger B (2016) Hormonal control of cold stress responses in plants. Cell Mol Life Sci 73:797–810. https://doi.org/10.1007/s00018-015-2089-6. (PMID: 10.1007/s00018-015-2089-626598281)
Fan YX, Peng JY, Wu JC, Zhou P, He RJ, Allan AC, Zeng LH (2021) NtbHLH1, a JAF13-like bHLH, interacts with NtMYB6 to enhance proanthocyanidin accumulation in Chinese Narcissus. BMC Plant Boil 21:1–14. https://doi.org/10.1186/s12870-021-03050-1. (PMID: 10.1186/s12870-021-03050-1)
Feller A, Machemer K, Braun EL, Grotewold E (2011) Evolutionary and comparative analysis of MYB and bHLH plant transcription factors. Plant J 66:94–116. https://doi.org/10.1111/j.1365-313X.2010.04459.x. (PMID: 10.1111/j.1365-313X.2010.04459.x21443626)
Fu JJ, Sun PY, Luo YL, Zhou HY, Gao JZ, Zhao D, Pubu ZM, Liu JL, Hu TM (2019) Brassinosteroids enhance cold tolerance in Elymus nutans via mediating redox homeostasis and proline biosynthesis. Environ Exp Bot 167:103831. https://doi.org/10.1016/j.envexpbot.2019.103831. (PMID: 10.1016/j.envexpbot.2019.103831)
Gao F, Yao HP, Zhao HX, Zhou J, Luo XP, Huang YJ, Li CL, Chen H (2016) Tartary buckwheat FtMYB10 encodes an R2R3-MYB transcription factor that acts as a novel negative regulator of salt and drought response in transgenic Arabidopsis. Plant Physiol Biochem 109:387–396. https://doi.org/10.1016/j.plaphy.2016.10.022. (PMID: 10.1016/j.plaphy.2016.10.02227814568)
Giannopolitis CN, Ries SK (1977) Superoxide dismutase I. occurrence in higher plants. Plant Physiol 59:309–314. https://doi.org/10.1104/pp.59.2.309. (PMID: 10.1104/pp.59.2.30916659839542387)
Gill SS, Tuteja N (2010) Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem 48:909–930. https://doi.org/10.1016/j.plaphy.2010.08.016. (PMID: 10.1016/j.plaphy.2010.08.01620870416)
Goossens J, Mertens J, Goossens A (2017) Role and functioning of bHLH transcription factors in jasmonate signalling. J Exp Bot 68:1333–1347. https://doi.org/10.1093/jxb/erw440. (PMID: 10.1093/jxb/erw44027927998)
Gu B, Zhang B, Ding L, Li PY, Shen L, Zhang JX (2020) Physiological change and transcriptome analysis of Chinese wild Vitis amurensis and Vitis vinifera in response to cold stress. Plant Mol Biol Rep 38:478–490. https://doi.org/10.1007/s11105-020-01210-5. (PMID: 10.1007/s11105-020-01210-5)
Guo XY, Liu DF, Chong K (2018) Cold signaling in plants: insights into mechanisms and regulation. J Integr Plant Biol 60:745–756. https://doi.org/10.1111/jipb.12706. (PMID: 10.1111/jipb.1270630094919)
Hao Y, Wang J, Hu C, Zhou Q, Mubeen HM, Hou X (2022) Regulation of BcMYB44 on Anthocyanin Synthesis and Drought Tolerance in Non-Heading Chinese Cabbage (Brassica campestris ssp. chinensis Makino). Horticulturae. https://doi.org/10.3390/horticulturae8050351. (PMID: 10.3390/horticulturae8050351)
He Y, Li M, Wang Y, Shen S (2022) The R2R3-MYB transcription factor MYB44 modulates carotenoid biosynthesis in Ulva prolifera. Algal Res 62:102578. https://doi.org/10.1016/j.algal.2021.102578. (PMID: 10.1016/j.algal.2021.102578)
Heidari P, Faraji S, Ahmadizadeh M, Ahmar S, Mora-Poblete F (2021) New insights into structure and function of TIFY genes in Zea mays and Solanum lycopersicum: a genome-wide comprehensive analysis. Front Genet 12:534. https://doi.org/10.3389/fgene.2021.657970. (PMID: 10.3389/fgene.2021.657970)
Heidarvand L, Amiri RM (2010) What happens in plant molecular responses to cold stress? Acta Physiol Plant 32:419–431. https://doi.org/10.1007/s11738-009-0451-8. (PMID: 10.1007/s11738-009-0451-8)
Huang YJ, Zhao HX, Gao F, Yao PF, Deng RY, Li CL, Chen H, Wu Q (2018) A R2R3-MYB transcription factor gene, FtMYB13, from Tartary buckwheat improves salt/drought tolerance in Arabidopsis. Plant Physiol Biochem 727:238–248. https://doi.org/10.1016/j.plaphy.2018.09.012. (PMID: 10.1016/j.plaphy.2018.09.012)
Huang X, Chen MH, Yang LT, Li YR, Wu JM (2015) Effects of exogenous abscisic acid on cell membrane and endogenous hormone contents in leaves of sugarcane seedlings under cold stress. Sugar Tech 17:59–64. https://doi.org/10.1007/s12355-014-0343-0. (PMID: 10.1007/s12355-014-0343-0)
Huang XB, Shi HY, Hu ZR, Liu A, Amombo E, Chen L, Fu JM (2017) ABA is involved in regulation of cold stress response in bermudagrass. Front Plant Sci 8:1613. https://doi.org/10.3389/fpls.2017.01613. (PMID: 10.3389/fpls.2017.01613290817825645512)
Jaglo-Ottosen KR, Gilmour SJ, Zarka DG, Schabenberger O, Thomashow MF (1998) Arabidopsis CBF1 overexpression induces COR genes and enhances freezing tolerance. Science 280:104–106. https://doi.org/10.1126/science.280.5360.104. (PMID: 10.1126/science.280.5360.1049525853)
Jia DJ, Wu P, Shen F, Li W, Zheng XD, Wang YZ, Yuan YB, Zhang XZ, Han ZH (2021) Genetic variation in the promoter of an R2R3-MYB transcription factor determines fruit malate content in apple (Malus domestica Borkh.). Plant Physiol 186:549–568. https://doi.org/10.1093/plphys/kiab098. (PMID: 10.1093/plphys/kiab098336248108154052)
Jung C, Seo JS, Han SW, Koo YJ, Kim CH, Song SI, Nahm BH, Choi YD, Cheong JJ (2008) Overexpression of AtMYB44 enhances stomatal closure to confer abiotic stress tolerance in transgenic Arabidopsis. Plant Physiol 146:623–635. https://doi.org/10.1104/pp.107.110981. (PMID: 10.1104/pp.107.110981181625932245844)
Kagale S, Rozwadowski K (2011) EAR motif-mediated transcriptional repression in plants: an underlying mechanism for epigenetic regulation of gene expression. Epigenetics 6:141–146. https://doi.org/10.4161/epi.6.2.13627. (PMID: 10.4161/epi.6.2.13627209354983278782)
Karuppanapandian T, Moon JC, Kim C, Manoharan K, Kim W (2011) Reactive oxygen species in plants: their generation, signal transduction, and scavenging mechanisms. Aust J Crop Sci 5:709–725.
Kou S, Chen L, Tu W, Scossa F, Wang YM, Liu J, Fernie AR, Song BT, Xie CH (2018) The arginine decarboxylase gene ADC1, associated to the putrescine pathway, plays an important role in potato cold-acclimated freezing tolerance as revealed by transcriptome and metabolome analyses. Plant J 96:1283–1298. https://doi.org/10.1111/tpj.14126. (PMID: 10.1111/tpj.1412630307077)
Kranz HD, Denekamp M, Greco R, Jin H, Leyva A, Meissner RC, Petroni K, Urzainqui A, Bevan M, Martin C (1998) Towards functional characterisation of the members of the R2R3-MYB gene family from Arabidopsis thaliana. Plant J 16:263–276. https://doi.org/10.1046/j.1365-313x.1998.00278.x. (PMID: 10.1046/j.1365-313x.1998.00278.x9839469)
Kumar V, Yadav SK (2009) Proline and betaine provide protection to antioxidant and methylglyoxal detoxification systems during cold stress in Camellia sinensis (L.) O. Kuntze Acta Physiol Plant 31:261–269. https://doi.org/10.1007/s11738-008-0227-6. (PMID: 10.1007/s11738-008-0227-6)
Leng P, Zhang GL, Li XX, Wang LH, Zheng ZM (2009) Cloning of 9-cis-epoxycarotenoid dioxygenase (NCED) gene encoding a key enzyme during abscisic acid (ABA) biosynthesis and ABA-regulated ethylene production in detached young persimmon calyx. Sci Bull 54:2830–2838. https://doi.org/10.1007/s11434-009-0685-2. (PMID: 10.1007/s11434-009-0685-2)
Li JB, Zhao S, Yu X, Du W, Li H, Sun Y, Sun H, Ruan CJ (2021a) Role of Xanthoceras sorbifolium MYB44 in tolerance to combined drought and heat stress via modulation of stomatal closure and ROS homeostasis. Plant Physiol Biochem 162:410–420. https://doi.org/10.1016/j.plaphy.2021.03.007. (PMID: 10.1016/j.plaphy.2021.03.00733740680)
Li H, Guo Y, Lan Z, Xu K, Chang J, Ahammed GJ, Ma JX, Wei CH, Zhang X (2021b) Methyl jasmonate mediates melatonin-induced cold tolerance of grafted watermelon plants. Hort Res. https://doi.org/10.1038/s41438-021-00496-0. (PMID: 10.1038/s41438-021-00496-0)
Li LX, Wei ZZ, Zhou ZL, Zhao DL, Tang J, Yang F, Li YH, Chen XY, Han Z, Yao GF, Hu KD, Zhang H (2021c) A single amino acid mutant in the EAR motif of IbMYB44.2 reduced the inhibition of anthocyanin accumulation in the purple-fleshed sweetpotato. Plant Physiol Biochem 167:410–419. https://doi.org/10.1016/j.plaphy.2021.08.012. (PMID: 10.1016/j.plaphy.2021.08.01234411780)
Li M, Wang CH, Shi JL, Zhang YJ, Liu T, Qi HY (2021d) Abscisic acid and putrescine synergistically regulate the cold tolerance of melon seedlings. Plant Physiol Biochem 166:1054–1064. https://doi.org/10.1016/j.plaphy.2021.07.011. (PMID: 10.1016/j.plaphy.2021.07.01134293605)
Li PY, Yu DD, Gu B, Zhang HJ, Liu QY, Zhang JX (2022) Overexpression of the VaERD15 gene increases cold tolerance in transgenic grapevine. Sci Hortic 293:110728. https://doi.org/10.1016/j.scienta.2021.110728. (PMID: 10.1016/j.scienta.2021.110728)
Li XR, Tang Y, Li HL, Luo W, Zhou CJ, Zhang LX, Lv JY (2020) A wheat R2R3 MYB gene TaMpc1-D4 negatively regulates drought tolerance in transgenic Arabidopsis and wheat. Plant Sci 299:110613. https://doi.org/10.1016/j.plantsci.2020.110613. (PMID: 10.1016/j.plantsci.2020.11061332900449)
Lin Q, Xie Y, Guan W, Duan Y, Wang Z, Sun C (2019) Combined transcriptomic and proteomic analysis of cold stress induced sugar accumulation and heat shock proteins expression during postharvest potato tuber storage. Food Chem 297:124991. https://doi.org/10.1016/j.foodchem.2019.124991. (PMID: 10.1016/j.foodchem.2019.12499131253316)
Liu H, Zhou Y, Li H, Wang T, Zhang J, Ouyang B, Ye Z (2018a) Molecular and functional characterization of ShNAC1, an NAC transcription factor from Solanum habrochaites. Plant Sci 271:9–19. https://doi.org/10.1016/j.plantsci.2018.03.005. (PMID: 10.1016/j.plantsci.2018.03.00529650161)
Liu JY, Shi YT, Yang SH (2018b) Insights into the regulation of C-repeat binding factors in plant cold signalling. J Integr Plant Biol 60:780–795. https://doi.org/10.1111/jipb.12657. (PMID: 10.1111/jipb.1265729667328)
Liu R, Chen L, Jia Z, Lü B, Shi H, Shao W, Dong H (2011) Transcription factor AtMYB44 regulates induced expression of the ETHYLENE INSENSITIVE2 gene in Arabidopsis responding to a harpin protein. Mol Plant Microbe Interact 24:377–389. https://doi.org/10.1094/mpmi-07-10-0170. (PMID: 10.1094/mpmi-07-10-017021117868)
Lv Y, Yang M, Hu D, Yang ZY, Ma SQ, Li XH, Xiong LZ (2017) The OsMYB30 transcription factor suppresses cold tolerance by interacting with a JAZ protein and suppressing β-amylase expression. Plant Physiol 173:1475–1491. https://doi.org/10.1104/pp.16.01725. (PMID: 10.1104/pp.16.01725280628355291022)
Matsui A, Ishida J, Morosawa T, Mochizuki Y, Kaminuma E, Endo TA, Okamoto M, Nambara E, Nakajima M, Kawashima M (2008) Arabidopsis transcriptome analysis under drought, cold, high-salinity and ABA treatment conditions using a tiling array. Plant Cell Physiol 49:1135–1149. https://doi.org/10.1093/pcp/pcn101. (PMID: 10.1093/pcp/pcn10118625610)
Mehrotra S, Verma S, Kumar S, Kumari S, Mishra BN (2020) Transcriptional regulation and signalling of cold stress response in plants: an overview of current understanding. Environ Exp Bot 180:104243. https://doi.org/10.1016/j.envexpbot.2020.104243. (PMID: 10.1016/j.envexpbot.2020.104243)
Ming RH, Zhang Y, Wang Y, Khan MDH, Dahro B, Liu JH (2021) The JA-responsive MYC2-BADH-like transcriptional regulatory module in Poncirus trifoliata contributes to cold tolerance by modulation of glycine betaine biosynthesis. The New Phytol 229:2730–2750. https://doi.org/10.1111/nph.17063. (PMID: 10.1111/nph.1706333131086)
Misener SR, Chen CP, Walker VK (2001) Cold tolerance and proline metabolic gene expression in drosophila melanogaster. J Insect Physiol 47:393–400. https://doi.org/10.1016/S0022-1910(00)00141-4. (PMID: 10.1016/S0022-1910(00)00141-411166304)
Moeder W, Ung H, Mosher S, Yoshioka K (2010) SA-ABA antagonism in defense responses. Plant Signal Behav 5:1231–1233. https://doi.org/10.4161/psb.5.10.12836. (PMID: 10.4161/psb.5.10.12836208616863115354)
Nguyen XC, Hoang MH, Kim HS, Lee K, Liu XM, Kim SH, Bahk S, Park HC, Chung WS (2012) Phosphorylation of the transcriptional regulator MYB44 by mitogen activated protein kinase regulates Arabidopsis seed germination. Biochem Biophys Res Commun 423:703–708. https://doi.org/10.1016/j.bbrc.2012.06.019. (PMID: 10.1016/j.bbrc.2012.06.01922704933)
Persak H, Pitzschke A (2014) Dominant repression by Arabidopsis transcription factor MYB44 causes oxidative damage and hypersensitivity to abiotic stress. Int J Mol Sci 15:2517–2537. https://doi.org/10.3390/ijms15022517. (PMID: 10.3390/ijms15022517245311383958865)
Qiu ZK, Yan SS, Xia B, Jiang J, Yu BW, Lei JJ, Chen CM, Chen L, Yang Y, Wang YQ (2019) The eggplant transcription factor MYB44 enhances resistance to bacterial wilt by activating the expression of spermidine synthase. J Exp Bot 70:5343–5354. https://doi.org/10.1093/jxb/erz259. (PMID: 10.1093/jxb/erz25931587071)
Rao XY, Huang XL, Zhou ZC, Lin X (2013) An improvement of the 2ˆ(–delta delta CT) method for quantitative real-time polymerase chain reaction data analysis. Biostat Bioinforma Biomath 3:71–85. (PMID: 255581714280562)
Shamloo-Dashtpagerdi R, Razi H, Ebrahimie E, Niazi A (2018) Molecular characterization of Brassica napus stress related transcription factors, BnMYB44 and BnVIP1, selected based on comparative analysis of Arabidopsis thaliana and Eutrema salsugineum transcriptomes. Mol Biol Rep 45:1111–1124. https://doi.org/10.1007/s11033-018-4262-0. (PMID: 10.1007/s11033-018-4262-030039430)
Shi YT, Ding YL, Yang SH (2015) Cold signal transduction and its interplay with phytohormones during cold acclimation. Plant Cell Physiol 56:7–15. https://doi.org/10.1093/pcp/pcu115. (PMID: 10.1093/pcp/pcu11525189343)
Shi YT, Ding YL, Yang SH (2018) Molecular regulation of CBF signaling in cold acclimation. Trends Plant Sci 23:623–637. https://doi.org/10.1016/j.tplants.2018.04.002. (PMID: 10.1016/j.tplants.2018.04.00229735429)
Shim JS, Choi YD (2013) Direct regulation of WRKY70 by AtMYB44 in plant defense responses. Plant Signal Behav 8:e20783. https://doi.org/10.4161/psb.24509. (PMID: 10.4161/psb.2450923603962)
Shin LJ, Lo JC, Yeh KC (2012) Copper chaperone antioxidant protein1 is essential for copper homeostasis. Plant Physiol 159:1099–1110. https://doi.org/10.1104/pp.112.195974. (PMID: 10.1104/pp.112.195974225558793387697)
Shu X, Ding L, Gu B, Zhang HJ, Guan PY, Zhang JX (2021) A stress associated protein from Chinese wild Vitis amurensis, VaSAP15, enhances the cold tolerance of transgenic grapes. Sci Hortic 285:110147. https://doi.org/10.1016/j.scienta.2021.110147. (PMID: 10.1016/j.scienta.2021.110147)
Stracke R, Werber M, Weisshaar B (2001) The R2R3-MYB gene family in Arabidopsis thaliana. Curr Opin Plant Biol 4:447–456. https://doi.org/10.1016/S1369-5266(00)00199-0. (PMID: 10.1016/S1369-5266(00)00199-011597504)
Sun X, Wang Y, Sui N (2018) Transcriptional regulation of bHLH during plant response to stress. Biochem Biophys Res Commun 503:397–401. https://doi.org/10.1016/j.bbrc.2018.07.123. (PMID: 10.1016/j.bbrc.2018.07.12330057319)
Tamás L, Huttová J, Žigová Z (1997) Accumulation of stress-proteins in intercellular spaces of barley leaves induced by biotic and abiotic factors. Biol Plant 39:387–394. https://doi.org/10.1023/a:1001028226434. (PMID: 10.1023/a:1001028226434)
Thomashow MF (2010) Molecular basis of plant cold acclimation: insights gained from studying the CBF cold response pathway. Plant Physiol 154:571–577. https://doi.org/10.1104/pp.110.161794. (PMID: 10.1104/pp.110.161794209211872948992)
Vanholme B, Grunewald W, Bateman A, Kohchi TKY, Gheysen G (2007) The tify family previously known as ZIM. Trends Plant Sci 12:239–244. https://doi.org/10.1016/j.tplants.2007.04.004. (PMID: 10.1016/j.tplants.2007.04.00417499004)
Verma D, Jalmi SK, Bhagat PK, Verma N, Sinha AK (2020) A bHLH transcription factor, MYC2, imparts salt intolerance by regulating proline biosynthesis in Arabidopsis. FEBS J 287:2560–2576. https://doi.org/10.1111/febs.15157. (PMID: 10.1111/febs.1515731782895)
Vogel JT, Zarka DG, Van Buskirk HA, Fowler SG, Thomashow MF (2005) Roles of the CBF2 and ZAT12 transcription factors in configuring the low temperature transcriptome of Arabidopsis. Plant J 41:195–211. https://doi.org/10.1111/j.1365-313X.2004.02288.x. (PMID: 10.1111/j.1365-313X.2004.02288.x15634197)
Wan YZ, Schwaninger HR, Li D, Simon CJ, Wang YJ, He PC (2008) The eco-geographic distribution of wild grape germplasm in China. Vitis 47:77.
Wang W, Vignani R, Scali M, Cresti M (2006) A universal and rapid protocol for protein extraction from recalcitrant plant tissues for proteomic analysis. Electrophoresis 27:2782–2786. https://doi.org/10.1002/elps.200500722. (PMID: 10.1002/elps.20050072216732618)
Wang J, Sun PP, Chen CL, Wang Y, Fu XZ, Liu JH (2011) An arginine decarboxylase gene PtADC from Poncirus trifoliata confers abiotic stress tolerance and promotes primary root growth in Arabidopsis. J Exp Bot 62:2899–2914. https://doi.org/10.1093/jxb/erq463. (PMID: 10.1093/jxb/erq46321282323)
Wang D, Jiang C, Liu W, Wang Y (2020) The WRKY53 transcription factor enhances stilbene synthesis and disease resistance by interacting with MYB14 and MYB15 in Chinese wild grape. J Exp Bot 71:3211–3226. https://doi.org/10.1093/jxb/eraa097. (PMID: 10.1093/jxb/eraa09732080737)
Wang SS, Shi MY, Zhang Y, Xie XB, Sun PP, Fang CB, Zhao J (2021a) FvMYB24, a strawberry R2R3-MYB transcription factor, improved salt stress tolerance in transgenic Arabidopsis. Biochem Biophys Res Commun 569:93–99. https://doi.org/10.1016/j.bbrc.2021.06.085. (PMID: 10.1016/j.bbrc.2021.06.08534237433)
Wang Y, Jiang H, Mao Z, Liu W, Jiang S, Xu H, Chen X (2021b) Ethylene increases the cold tolerance of apple via the MdERF1B-MdCIbHLH1 regulatory module. Plant J 106:379–393. https://doi.org/10.1111/tpj.15170. (PMID: 10.1111/tpj.1517033497017)
Wani SH, Kumar V, Shriram V, Sah SK (2016) Phytohormones and their metabolic engineering for abiotic stress tolerance in crop plants. Crop J 4:162–176. https://doi.org/10.1016/j.cj.2016.01.010. (PMID: 10.1016/j.cj.2016.01.010)
Wei LZ, Mao WW, Jia MR, Xing SN, Ali U, Zhao Y, Chen YT, Cao ML, Dai ZR, Zhang K, Dou ZC, Jia WS, Li B (2018) FaMYB44.2, a transcriptional repressor, negatively regulates sucrose accumulation in strawberry receptacles through interplay with FaMYB10. J Exp Bot 69:4805–4820. https://doi.org/10.1093/jxb/ery249. (PMID: 10.1093/jxb/ery249300850796137983)
Wei ZZ, Hu KD, Zhao DL, TangJ HZQ, Jin P, Li YH, Han Z, Hu LY, Yao GF, Zhang H (2020) MYB44 competitively inhibits the formation of the MYB340-bHLH2-NAC56 complex to regulate anthocyanin biosynthesis in purple-fleshed sweet potato. BMC Plant Biol 20:258. https://doi.org/10.1186/s12870-020-02451-y. (PMID: 10.1186/s12870-020-02451-y325035047275474)
Wu RG, Wang Y, Wu T, Xu XF, Han ZH (2018) Functional characterisation of MdMYB44 as a negative regulator in the response to cold and salt stress in apple calli. J Hortic Sci Biotechnol 93:347–355. https://doi.org/10.1080/14620316.2017.1373038. (PMID: 10.1080/14620316.2017.1373038)
Yang Y, Ahammed GJ, Wan C, Liu H, Chen R, Zhou Y (2019) Comprehensive analysis of TIFY transcription factors and their expression profiles under jasmonic acid and abiotic stresses in watermelon. Int J Genomics 2019:1–13. https://doi.org/10.1155/2019/6813086. (PMID: 10.1155/2019/6813086)
Yang ZZ, Li YQ, Gao FZ, Jin W, Li SY, Kimani S, Yang S, Bao T, Gao X, Wang L (2020) MYB21 interacts with MYC2 to control the expression of terpene synthase genes in flowers of Freesia hybrida and Arabidopsis thaliana. J Exp Bot 71:4140–4158. https://doi.org/10.1093/jxb/eraa184. (PMID: 10.1093/jxb/eraa18432275056)
Yang GH, Chen YX, Yu H, Zhang H, Han DG, Guo XY, Yan EQ, Quan H, Li T (2021) Raspberry (Rubus idaeus L.) NCED1 gene enhances high salinity and cold tolerance in Arabidopsis. In Vitro Cell Dev-Pl 57:811–819. https://doi.org/10.1007/s11627-021-10230-z. (PMID: 10.1007/s11627-021-10230-z)
Yao PF, Sun ZX, Li CL, Zhao XR, Li MF, Deng RY, Huang YJ, Zhao HX, Chen H, Wu Q (2018) Overexpression of Fagopyrum tataricum FtbHLH2 enhances tolerance to cold stress in transgenic Arabidopsis. Plant Physiol Biochem 125:85–94. https://doi.org/10.1016/j.plaphy.2018.01.028. (PMID: 10.1016/j.plaphy.2018.01.02829427891)
Yin Y, Ma QP, Zhu ZX, Cui QY, Chen CS, Chen X, Fang WP, Li XH (2016) Functional analysis of CsCBF3 transcription factor in tea plant (Camellia sinensis) under cold stress. Plant Growth Regul 80:335–343. https://doi.org/10.1007/s10725-016-0172-0. (PMID: 10.1007/s10725-016-0172-0)
Yoo SD, Cho YH, Sheen J (2007) Arabidopsis mesophyll protoplasts: a versatile cell system for transient gene expression analysis. Nat Protoc 2:1565–1572. https://doi.org/10.1038/nprot.2007.199. (PMID: 10.1038/nprot.2007.19917585298)
Yu DD, Zhang LH, Zhao K, Niu RX, Zhai H, Zhang JX (2017) VaERD15, a transcription factor gene associated with cold-tolerance in Chinese wild Vitis amurensis. Front Plant Sci 8:297. https://doi.org/10.3389/fpls.2017.00297. (PMID: 10.3389/fpls.2017.00297283260905339311)
Zhai H, Bai X, Zhu Y, Li Y, Cai H, Ji W, Ji Z, Liu X, Liu X, Li J (2010) A single-repeat R3-MYB transcription factor MYBC1 negatively regulates freezing tolerance in Arabidopsis. Biochem Biophys Res Commun 394:1018–1023. https://doi.org/10.1016/j.bbrc.2010.03.114. (PMID: 10.1016/j.bbrc.2010.03.11420331973)
Zhang JZ, Creelman RA, Zhu JK (2004) From laboratory to field. Using information from Arabidopsis to engineer salt, cold, and drought tolerance in crops. Plant Physiol 135:615–621. https://doi.org/10.1104/pp.104.040295. (PMID: 10.1104/pp.104.04029515173567514097)
Zhang XY, Liang C, Wang GP, Luo Y, Wang W (2010) The protection of wheat plasma membrane under cold stress by glycine betaine overproduction. Biol Plant 54:83–88. https://doi.org/10.1007/s10535-010-0012-4. (PMID: 10.1007/s10535-010-0012-4)
Zhang J, Wu X, Niu R, Liu Y, Liu N, Xu W, Wang Y (2012) Cold-resistance evaluation in 25 wild grape species. Vitis 51:153–160.
Zhang CY, Liu HC, Zhang XS, Guo QX, Bian SM, Wang JY, Zhai LL (2020a) VcMYB4a, an R2R3-MYB transcription factor from Vaccinium corymbosum, negatively regulates salt, drought, and temperature stress. Gene 757:144935. https://doi.org/10.1016/j.gene.2020.144935. (PMID: 10.1016/j.gene.2020.14493532653482)
Zhang P, Wang RL, Yang XP, Ju Q, Li WQ, Lü S, Tran LSP, Xu J (2020b) The R2R3−MYB transcription factor AtMYB49 modulates salt tolerance in Arabidopsis by modulating the cuticle formation and antioxidant defence. Plant Cell Environ 43:1925–1943. https://doi.org/10.1111/pce.13784. (PMID: 10.1111/pce.1378432406163)
Zhang XY, Ma MJ, Ye B, Liu L, Ji SJ (2021) Calcium ion improves cold resistance of green peppers (Capsicum annuum L.) by regulating the activity of protective enzymes and membrane lipid composition. Sci Hortic 277:109789. https://doi.org/10.1016/j.scienta.2020.109789. (PMID: 10.1016/j.scienta.2020.109789)
Zhao YH, Yang YP, Jiang JW, Zhang XM, Ma ZW, Meng LD, Cui GW, Yin XJ (2022) The caucasian clover gene TaMYC2 responds to abiotic stress and improves tolerance by increasing the activity of antioxidant enzymes. Genes 13:329. https://doi.org/10.3390/genes13020329. (PMID: 10.3390/genes13020329352053738871790)
Zhou L, Yarra R, Yang Y, Liu Y, Yang M, Cao H (2022) The oil palm R2R3-MYB subfamily genes EgMYB111 and EgMYB157 improve multiple abiotic stress tolerance in transgenic Arabidopsis plants. Plant Cell Rep 41:377–393. https://doi.org/10.1007/s00299-021-02814-1. (PMID: 10.1007/s00299-021-02814-134817657)
Grant Information:
2013BAD02B04-06 National Science-Technology Support Plan Projects of the Ministry of Science and Technology of the People's Republic of China; 2017ZDXM-NY-026 Shaanxi Province Key Project-Agriculture of the People's Republic of China
Contributed Indexing:
Keywords: Cold resistance; Interacting proteins; Transgenic Arabidopsis; Transgenic grape; VaMYB44; Vitis amurensis
Substance Nomenclature:
0 (Plant Proteins)
0 (Transcription Factors)
Entry Date(s):
Date Created: 20220606 Date Completed: 20220725 Latest Revision: 20220725
Update Code:
20240105
DOI:
10.1007/s00299-022-02883-w
PMID:
35666271
Czasopismo naukowe
Key Message: Heterologous expression of VaMYB44 gene in Arabidopsis and V. vinifera cv. 'Thompson Seedless' increases cold sensitivity, which is mediated by the interaction of VaMYC2 and VaTIFY5A with VaMYB44 MYB transcription factors play critical roles in plant stress response. However, the function of MYB44 under low temperature stress is largely unknown in grapes. Here, we isolated a VaMYB44 gene from Chinese wild Vitis amurensis acc. 'Shuangyou' (cold-resistant). The VaMYB44 is expressed in various organs and has lower expression levels in stems and young leaves. Exposure of the cold-sensitive V. vinifera cv. 'Thompson Seedless' and cold-resistant 'Shuangyou' grapevines to cold stress (-1 °C) resulted in differential expression of MYB44 in leaves with the former reaching 14 folds of the latter after 3 h of cold stress. Moreover, the expression of VaMYB44 was induced by exogenous ethylene, abscisic acid, and methyl jasmonate in the leaves of 'Shuangyou'. Notably, the subcellular localization assay identified VaMYB44 in the nucleus. Interestingly, heterologous expression of VaMYB44 in Arabidopsis and 'Thompson Seedless' grape increased freezing-induced damage compared to their wild-type counterparts. Accordingly, the transgenic lines had higher malondialdehyde content and electrolyte permeability, and lower activities of superoxide dismutase, peroxidase, and catalase. Moreover, the expression levels of some cold resistance-related genes decreased in transgenic lines. Protein interaction assays identified VaMYC2 and VaTIFY5A as VaMYB44 interacting proteins, and VaMYC2 could bind to the VaMYB44 promoter and promote its transcription. In conclusion, the study reveals VaMYB44 as the negative regulator of cold tolerance in transgenic Arabidopsis and transgenic grapes, and VaMYC2 and VaTIFY5A are involved in the cold sensitivity of plants by interacting with VaMYB44.
(© 2022. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.)

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies